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Abstract
Deep neural networks (DNNs) are one of the popular models

for learning relationships between complex data. Training a

DNN model is a compute- and memory-intensive operation.

The size of modern DNN models spans into the terabyte

region, requiring multiple accelerators to train –driving up

the training cost. Such humongous memory requirements

shift the focus toward memory rather than computation.

CPU- memory, on the other hand, can be scaled to several

terabytes with new emerging memory technologies such

as HBM and CXL-attached memories. Furthermore, recent

advancements to the CPUs in terms of dedicated instructions

for DNN training and inference are bridging the compute

gap between CPUs and accelerators.

Proposed is an exploratory work in the direction of cost-

effective DNN training on CPUs where we aim to alleviate

memory management challenges in DNN training. We pro-

pose TierTrain, a novel memory tiering solution based on a

dynamic queuing system that leverage the periodic and deter-

ministic memory access behavior in DNN training to manage

data placement across memory tiers. TierTrain proactively

manages tensors by aggressively offloading them to slow

memory tiers (NVMM, CXL) and timely prefetching them

back to fast memory tiers (HBM, DRAM).

Our evaluation of TierTrain on a tiered memory system

with a real CXL-attached memory used for memory expan-

sion and NVMM as a low cost memory results in average

fast memory footprint reduction of 59–83% and peak fast

memory footprint reduction of 25–74% with a performance

overhead of 1–16%. In a memory-constrained scenario, Tier-

Train outperforms the state-of-the-art tiering by improving

This work is licensed under a Creative Commons Attribution-
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the performance by 35–84% for a set of popular DNN training

models.
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1 Introduction
Deep Neural Networks (DNNs) are widely popular [11, 40,

41, 48, 66] and are critical for advancing the AI-first initia-

tive that, today, has permeated almost every facet of our

lives. Training a DNN model is a compute- and memory-

intensive task that has grown exponentially over the past few

years [26, 54]. The unprecedented surge in model size and

deeper networks needs systems to be provisioned with more

and more memory, thus demanding rapid memory scaling.

This is leading to the shift in focus towards memory rather

than compute, referred to as the memory wall problem [26].

Even though GPUs with high compute throughput [13, 54]

are typically used for training DNNmodels, they increasingly

suffer from the memory wall problem with larger models

and deeper networks. This is because the limited GPU mem-

ory cannot fit the entire model, resulting in data movement

to and from GPU memory, which in turn can overshadow

the GPU compute benefits. Multiple GPUs are required to

complete the process of a large DNN model.

We propose TierTrain, an exploratory work that aims at

alleviating the memory challenges associated with train-

ing large models with CPU memory. Our work is a step in

the direction of radical thinking of training a large model

on CPUs. CPU-based general-purpose computing, which is
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nowadays gaining traction in DNN training [28, 32, 54, 57],

does not suffer from data movement overheads, as the entire

physical memory is byte-addressable from the CPU. Fur-

thermore, emerging memory technologies like CXL, HBM,

and NVMM memories enable the scaling of CPU memory to

several terabytes. Recently, there has been a thrust towards

cost-effective DNN training[33] to bring the training of large

models within the reach of everybody, and not just a few big

players who can afford thousands of GPUs.

However, in a CPU-based system, physical memory pro-

visioned with traditional DRAM is unable to cope with the

capacity and cost scaling challenges of modern workloads,

including DNN training [28, 59, 71, 78]. This has led to

the adoption of tiered memory systems that have multiple

memory tiers with different cost-performance-capacity spec-

tra [50, 52, 55, 67, 69, 81]. In such systems, software is re-

sponsible for placing data across low-latency, low-capacity

fast memory tiers and low-cost, high-latency, high-capacity

slow memory tiers [50, 55, 67, 81].

The core principle of effective memory tiering is to hide

the cost of accessing data from a slowmemory tier by placing

frequently accessed data in the fast tier. Traditional tiering

solutions follow a reactive approachwhere the datamigration

between fast and slow memory tiers is triggered based on

the monitored memory access pattern (telemetry) of the

application in a certain time window. Hence, such tiering

solutions require precise telemetry, which in turn requires

aggressive monitoring of the application’s memory access

pattern, which impacts performance [58, 62].

TierTrain is a context aware memory tiering solution for

CPU-based DNN training designed based on our characteri-

zation of multiple DNN workloads [20, 35, 36, 77]. The core

concept for tiering is based on our observation that the mem-

ory access pattern of a CPU-based DNN training workload

is periodic and deterministic. We leverage this observation to

design a proactive tiering solution, which has a significant

advantage over the state-of-the-art reactive general-purpose

tiering solutions.

TierTrainmanages tensors by aggressively offloading them

to slow memory tiers and timely prefetching them to fast

memory tiers based on the memory access pattern during

different stages of the DNN training. This approach allows

training deeper-layered models with the same amount of fast

memory or training an existing model with less amount of

fast memory. Our evaluation of TierTrain on a tiered memory

system with a real CXL-attached memory used for memory

expansion and NVMM as a low cost memory results in aver-

age fast memory savings of 59–83% and peak fast memory

reduction of 25–74% with a performance overhead of 1–16%.

In a memory-constrained scenario, TierTrain outperforms

the state-of-the-art tiering by 35–84% for a set of popular

DNN models.

The key contributions of the paper are as follows:

(1) We perform a thorough characterization of DNN training

using different models and input to gain insights into

memory access pattern, memory usage pattern, and life

cycle of allocated data for DNN training (see Section 4).

(2) We propose an analytical queuing system that performs dy-

namic memory tiering during different execution phases

of the DNN training workload based on various factors

such as layer execution duration, size of the tensors, and

system state.

(3) We comprehensively evaluate TierTrain on a real CXL-

attached memory and Intel’s Optane DC PMM to demon-

strate its robustness on memory media with different la-

tency and bandwidth characteristics.

2 Background
In this section, we explain the necessary background required

for the rest of the paper.

2.1 DNN Training
Deep Neural Networks or DNNs are multi-layer neural net-

works with an input layer, multiple hidden layers, and an

output layer [27]. The hidden layers allow DNNs to capture

the complex relationships in data. During a DNN training,

❶ the input data is passed through the whole network, pro-

ducing an output. In an 𝑁 -layered network, we have:

𝑌𝑛 = 𝜎 (𝑊𝑛 · 𝑋𝑛) (1)

Where 𝑋𝑛 and 𝑌𝑛 are the input and output to layer 𝑛,

respectively,𝑊𝑛 is the weight matrix for the layer 𝑛, and 𝜎 is

the activation function [21]. 𝑌𝑛 is then passed as input to the

next layer, where it becomes 𝑋𝑛+1. This is repeated for every

layer and is referred to as a forward pass. ❷ Once the output

of all the layers is calculated, the loss is calculated with

respect to the ground truth. ❸ After the loss computation is

done, the backward pass begins. In this pass, for each layer,

the gradient for the weights is calculated. This step requires

the output that was generated in the forward pass of the

same layer. This whole process – forward pass and backward

pass – is repeated for multiple iterations, known as epochs
until the loss converges – marking the end of the training

process.

2.2 Memory Tiering
In order to reduce the memory cost and accommodate the

growing memory requirements of modern applications, data

centers typically deploy tiered memory systems where a

single system is equipped with different memory tiers at dif-

ferent cost-performance-capacity spectra [22, 47, 52, 55, 67,

69, 81]. A fast memory tier such as DRAM has lower access

latency, but is expensive and has limited memory capacity.
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Whereas a slow memory tier such as CXL-attached mem-

ory [73] and NVMMs [4, 25] has a higher memory capacity

and lower cost [25, 56], but has higher access latency. A slow

memory tier allows a cost-effective solution to satisfy the

growing memory needs of modern applications.

However, memory TCO savings with a slow memory tier

is not free as the data stored in such a tier incurs performance

overhead upon data access. Hence, prior works have explored

novel and interesting data tiering techniques to effectively

exploit memory tiers that place frequently accessed hot data

in fast memory tiers and less frequently accessed warm or

cold data in slow memory tiers [22, 47, 52, 55, 67, 69, 81].

3 Motivation
In this section, we provide a brief overview for themotivation

of our work to optimize DNN training on CPUs.

3.1 Limitation with GPU-Based Training
DNN models are typically trained on GPUs as they provide

high compute throughput [13, 54], which has grown on a

year-to-year basis and cater well to the high compute de-

mands of DNN training. In order to use the full potential

of a GPU’s compute resource, all the data has to be copied

to the GPU memory. However, GPUs fail to meet the fast-

growing memory requirements of DNN training and suffer

from low memory capacity on a single node [38, 39, 65, 70].

Whereas the compute power of GPUs has grown by 410×,
with proposals to further extend it by leveraging multiple

GPUs [6], the memory capacity in GPUs has only grown

by 2× [26] in the past two years. Consequently, the size of

the state-of-the-art DNN model has already crossed the ca-

pacity of an enterprise class GPU [44, 46]. Furthermore, the

promised unified memory model [54], or UM, where GPU

and CPU memory share a common address space, is still not

widely used due to severe performance overhead caused by

expensive GPU page faults [44].

Apart from this, the skyrocketing price of GPUs is also a

matter of concern among academia andmid-size industries as

it restricts their ability to utilize and contribute significantly

to the AI boom. Thus the ability to innovate in this space is

mainly limited to a few large players [54, 72].

3.2 CPU-Based Training Gaining Traction
Training DNN models on CPUs has been a concern due to

limited parallel processing capabilities, memory bandwidth,

and optimization in training frameworks. However, new

frontiers are being explored by the hardware and software

community to address the computing aspect of training a

DNN model on CPUs. The latest generation of CPUs from

Intel [45, 60] and Apple [1] have dedicated AMX (Advanced

Matrix eXtensions) instructions that enable fast general ma-

trix multiplications (GEMM) – a core operation in DNN train-

ing [5, 76]. These CPUs also have support for new datatypes

such as int8 and bf16 [61].

Software frameworks are also being optimized to leverage

these latest features to extract maximum compute power

from the CPUs. For example, latest Intel Xeon Scalable pro-

cessors significantly improves training and inference per-

formance compared to their previous generations [7, 61].

Efforts are underway to leverage multiple-CPU architecture

to extract GPU-like performance using the latest advance-

ments in compiler technology [86], developing algorithms

specific to CPU such as Sub-Linear Deep Learning Engine,

or SLIDE [15, 37], and proposing changes to the framework

to make it CPU friendly [14, 17, 18, 74, 75, 80].

Furthermore, CPUs are preferred for low-latency infer-

ence tasks as there is no driven offload, enabling a close

interaction between DNN and non-DNN workloads. Data

centers are typically over-provisioned to handle maximum

nodes and usually have idle CPUs. These idle CPUs can be

leveraged to train large DNN models without investing for

costly GPUs [23, 28, 31, 54, 61].

Summary: CPU-based DNN training is a viable, practical

and economical solution which is gaining traction. While

enormous amount of work has been previously done for

optimizing GPU-based DNN training, we strongly believe it

is time to look into and optimize CPU-based DNN training.

This paper attempts to optimize DNN training on issues

concerning memory, especially the memory wall problem,

by considering the emerging trends in memory hardware

and server design space, specifically targeting tiered memory

systems.

4 DNN Training Characterization
We characterize CPU-based DNN training frameworks to

gain insights into the impact of memory management sub-

systems on the overall performance. We analyze the life

cycle of critical data structures such as tensors, and factors

that drive the average and peak memory requirements of

different DNN training frameworks.

We evaluate 6 DNN models, including two Graph Neural

Networks (GraphSAGE [35], GAT [77]), three Convolutional

Neural Networks (ResNet-34, ResNet-50, ResNet-152 [36]),

and a Transformer (Vision Transformer [20]). We use stan-

dard Intel PEBS hardware counters [42] to collect the rel-

evant statistics for our analysis. System configuration and

workload details are mentioned in Section 7.
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Figure 1: Top-down analysis that shows CPU-based
DNN training workloads are primarilymemory bound.
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Figure 2: Average and peak DRAM usage for ResNet
models with different layers on the same input data
set

4.1 Top-Down Analysis
We quantifying the impact of memory on the overall execu-

tion time using a top-down analysis [84]. To identify DNN-

training performance bottlenecks we measure high level met-

rics such as frontend bound, backend bound, bad speculation,

retiring and then zoom into the dominant performance bot-

tlenecks at each level. Our DNN training workload is run on

DRAM with tiering disabled for the top-down analysis. As

shown in Figure 1, the top-down analysis reveals that DNN

training is predominantly (64%) backend bound. The next

level shows that the workload is 29% core bound and 35%

memory bound, implying that most stalls can be attributed to

the memory system. Drilling further down into the memory

bound category reveals that the workload is mainly bound

by the external memory (16%). Hence, the DNN training

workload is impacted by the latency and bandwidth of the

memory media.

4.2 Memory Footprint
A deep learning model employs multiple layers to perform in-

creasingly complex tasks and capture relationships between

large amounts of data, such as in speech and audio. Increas-

ing the number of layers can allow a model to learn complex

data relationships [29].
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Figure 3: Memory usage (resident set size (RSS)) during
training of ResNet-34 on CIFAR-10 for 2 epochs. The
dashed red and blue vertical lines mark the beginning
of forward and backward pass

However, the challenge with having more layers is the

increase in compute and memory resources needed to train

more parameters [68]. This is mainly because, the output

tensors of the forward pass of each layer must be stored

in memory to compute gradients in the backward pass. As

networks grow deeper, the number of such tensors that need

to be stored grows proportionately, increasing the average

and peak memory requirements. Figure 2 shows the average

and peak memory required to train ResNet model with 18,

50, and 152 layers. As the network depth grows from 18

to 152 layers, the average and peak memory requirements

increase by 8.3× and 6.1×, respectively. However, memory

is already accounting for 33–50% of TCO [3, 81]. To execute

deeper networks more memory should be provisioned on

the system which can significantly increase memory TCO.

Takeaway: This motivates the need for technologies that

can enable execution of deeper layered networks without

significantly increasing the memory cost.

4.3 Tensor Memory Management
Memory is a key aspect of DNN training. Hence, DNN train-

ing frameworks such as PyTorch manage tensors for optimal

performance [8, 64]. Figure 3 shows the memory usage dur-

ing the training of ResNet-34 with PyTorch for a total of 2

epochs. There are three important observations on howmem-

ory is used in each training epoch. ❶ At the beginning of the

training epoch, PyTorch allocates memory for certain ten-

sors representing the input dataset, weights, and the model

itself. These tensors stay alive during the complete training

process. ❷ During the execution of every layer, PyTorch allo-

cates temporary tensors for use during that particular layer

which are deallocated as the layer finishes its execution. ❸
During the execution of a layer in the forward pass, memory

is also allocated for the “saved” tensors that do not get freed
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Table 1: Idle time of saved tensors in different layers
for ResNet-34 on CIFAR-10

Layer ID Functional block Idle time
1 Conv. Layer 30 sec

2 Batch Norm. 29 sec

3-8 3 Residual Blocks (3x2 Conv. Layers) 20 sec

9-16 4 Residual Blocks (4x2 Conv. Layers) 14 sec

17-28 6 Residual Blocks (6x2 Conv. Layers) 4 sec

28-33 3 Residual Blocks (3x2 Conv. Layers) ≈ 0 sec

34 Fully connected Layer ≈ 0 sec
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Figure 4: Memory access pattern clearly indicating tier-
ing opportunity with DNN training workloads. Each
dot in the plot represents an accessed page. The dashed
red and blue vertical lines mark the beginning of for-
ward and backward pass.

immediately after the execution of that layer. Instead these

tensors are retained as they are used by the corresponding

layers in the backward pass to compute loss gradients by the

autograd engine. They are freed once the gradient computa-

tion is complete. These saved tensors contribute majorly to

the overall memory footprint consumed during the training

epochs.

4.4 Tiering Opportunity
For effective memory tiering, accurately identifying and plac-

ing hot and cold data sets in fast and slow memory is critical.

We profile memory accesses by the DNN training workload

to gain insights into memory access pattern in the process’s

virtual address space. We use Intel PEBS [42] to capture the

memory access pattern by specifically tracking the virtual

addresses of the retired load and store instructions.

Idleness of saved tensors: A saved tensor generated in a

particular layer in the forward pass is accessed again only in

the corresponding layer in the backward pass to compute the

gradient. Thus, these saved tensors are idle till they are ac-

cessed again in the backward pass. Given that the backward

pass processes layers in the opposite order of the forward

pass, we observed the idle time of saved tensors generated

in initial layers is significantly higher than the final layers

(see Table 1). Figure 4 shows the memory access pattern for

ResNet-34 for 2 epochs. Each dot in the plot represents an

accessed page. The memory access pattern clearly shows the

different idle times for saved tensors mapped at difference

address space.

Takeaway: The idle time for tensors in each layer is the

key observation for our proactive tiering technique. Migra-

tion of saved tensors that are idle during forward pass can

be performed proactively by identifying them at the end of

each layer’s execution. This also avoids delay in migrating

idle tensors; there is no need to wait for collecting page ac-

cess profile over a window of time as in the reactive tiering

techniques based on telemetry (60-120 seconds profiling win-

dow is used in production data centers [50]). In addition, this

approach completely avoids the performance overheads asso-

ciated with telemetry, such as checking and setting accessed

bits in page tables or overheads due to PMU interrupts.

4.5 Importance of Timely Prefetch
Prefetching migrated idle tensors to fast memory tier on-

time, i.e., before it is actively accessed again in backward

pass, is critical. Failing to do so will result in accesses to the

slow memory tier, severely impacting the performance. To

assess the performance impact, we run DNN training work-

load from fast DRAM memory and slow Optane memory.

Accessing tensors from Optane results in a slowdown of 15×.
Setting Epoch runtime (sec)

All DRAM 30

All Optane 457 (15× increase)

Challenges in prefetching: To avoid performance penalty,

evicted tensors should be ideally prefetched on-time, i.e.,

before they are required in the backward pass. Initiating a

prefetch at the beginning of the same layer in the backward

pass will be too late resulting in all the accesses served from

the slow tier, causing significant performance loss.

A naive approach such as prefetching idle tensors for layer

𝑛 at the beginning of layer𝑛+1 (note that layers are processed
in reverse order in the backward pass) is not an idle solution.

As the size of the tensors and execution time for each layer

can significantly vary, their prefetching time will also vary.

Triggering a prefetch at the start of the previous layer may

result in either a too-early or a too-late prefetch. The former

increases the fast memory usage while the latter increases

the performance overhead.

In this paper we propose a queuing system that efficiently

migrates and prefetches idle tensors to and from slow mem-

ory tiers on-time.
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5 Design
In this section, we discuss the design principles of TierTrain.

We propose an efficient and proactive tiering solution custom

designed for CPU-based DNN training workloads. One of

the design goals is to minimize the performance impact on

memory tiering on DNN workloads. Hence, our approach

leverages the periodic and deterministic memory access be-

havior of DNN training workloads, instead of telemetry, for

efficient memory tiering (see Section 4).

Benefits over tradition tiering: Traditional tiering work
that relies on the telemetry events such as hardware counters

of manipulating bits in the page table entry to generate a

hotness profile cannot make aggressive and timely migration

decisions as they have to wait for a data to become hot or cold.

Instead, TierTrain’s unique approach of directly hooking into

the training framework allows it to perform context-aware

proactive memory tiering.

5.1 Design Principle
Aggressive eviction: Evict a saved tensor from fast to slow

memory as soon as the corresponding layer that generated

the tensor finishes. This will ensure immediate reduction of

fast memory footprint.

Timely prefetch: An evicted tensor must be prefetched

back to the fast memory before it is accessed again in the

backward pass. The prefetching must be timed properly –

prefetching too early results in higher fast memory con-

sumption, whereas a delay in prefetching results in memory

accesses to slow memory, which negatively impacts the per-

formance (see Section 4.5).

5.2 Design Overview
As shown in Figure 5, TierTrain collects the execution time

of each layer in the forward pass and backward pass. This

information is used in the subsequent epochs to evict data

and ensure a timely prefetch.

Eviction: From second epoch onwards, in the forward pass,

TierTrain is triggered when a layer finishes executing. Based

on the information collected from hooks or triggers, the Tier-

Train’s daemon, performs the following actions: identifies

the saved tensors that can be evicted and the time when

the prefetch for this tensor should be triggered. If on-time

prefetching is not possible for the entire tensor, it calculates

the optimal size for partial eviction of the tensor and com-

putes the prefetch trigger time accordingly. It may decide

to skip the eviction entirely and retain the tensor in fast

memory (see Section 5.3). Evicts the data pages associated

with the tensors identified for eviction in the previous step

and schedules a prefetch request.

Prefetching: The prefetching schedule ensures that the

evicted idle tensors are kept in the slow tier as long as possi-

ble and are prefetched on-time to fast memory tiers to avoid

performance penalty of accessing the tensors from the slow

tier. In the backward pass, TierTrain periodically checks if

a tensor needs to be prefetched. If yes, then a a prefetching

request is issued.

5.3 Queuing System
We present a queuing system, the core of TierTrain. Fig-

ure 6 shows the training of a DNN model along with the

key structures and events such as the start and end time of

different layers in the forward and backward pass and the

size of saved tensors in each layer. The system processes all

the information collected and issues eviction and prefetch

requests.

Idle time: A saved tensor generated in the forward pass of

a layer is used again in the same layer in the backward pass.

The idle time (ITl) of a layer 𝑙 is defined as follows:

IT𝑙 = 𝑡𝑠𝐵
𝑙
− 𝑡𝑒𝐹

𝑙
(2)

Here, 𝑡𝑠𝐵
𝑙
and 𝑡𝑒𝐹

𝑙
is the start and end time of the layer 𝑙 in

the backward and forward pass, respectively. For efficient

tiering, for each tensor migration request, there should be
enough time to evict it and prefetch it on-time.

IT𝑙 ≥ 𝑒𝑣𝑖𝑐𝑡_𝑡𝑖𝑚𝑒𝑙 + 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ_𝑡𝑖𝑚𝑒𝑙 (3)

Here, 𝑒𝑣𝑖𝑐𝑡_𝑡𝑖𝑚𝑒𝑙 and 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ_𝑡𝑖𝑚𝑒𝑙 is the time taken to

evict tensor from fast to slow memory and prefetch the same

tensor from slow to fast memory for layer l, respectively.

5.3.1 Tensor Eviction. The eviction rate from fast memory to

slow Memory (𝐸𝑅) and prefetching rate from slow memory

to fast memory (𝑃𝑅) determines the time taken for eviction

and prefetching, respectively. It can be noted that for mem-

ory technologies such as Optane with asymmetric read and

write latency 𝐸𝑅 and 𝑃𝑅 can be different. In addition, system

state such as number of worker threads performing tensor

migration and memory bandwidth limit enforced by the user

determines 𝐸𝑅 and 𝑃𝑅.

Using Equation 3, we get

IT𝑙 ≥
𝑠𝑧𝑙

𝐸𝑅
+ 𝑠𝑧𝑙

𝑃𝑅
(4)

IT𝑙 ≥ 𝑠𝑧𝑙 ∗𝑀𝑅 (5)

Here, 𝑠𝑧𝑙 is the size of the tensor for layer l and 𝑀𝑅 is the

migration rate defined as𝑀𝑅 = ( 1

𝐸𝑅
+ 1

𝑃𝑅
).
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While deciding whether to evict or not, the system does the

following:

𝑒𝑣𝑖𝑐𝑡? =

{
Accept, 𝑠𝑧𝐸

𝑙
= 𝑠𝑧𝑙 if IT𝑙 ≥ 𝑠𝑧𝑙 ∗𝑀𝑅 + ST,

Modify size else

(6)

Here, 𝑠𝑧𝐸
𝑙
is the size of tensor that can be evicted based on

the idle time. ST or stay time is a constant that defines the
minimum amount of time an evicted tensor should reside

in the slow memory tier before it is prefetched to the fast

memory. ST is used to avoid ping-ponging of tensors between

slow and fast memory tiers.

Modify eviction request: If the system cannot evict the

complete tensor due to idle time constraints, it attempts to

evict a partial tensor. The partial size is calculated as follows:

𝑠𝑧𝐸
𝑙
≤ (IT𝑙 − ST)

𝑀𝑅
(7)

5.3.2 Tensor Prefetching. An evicted tensor (𝑠𝑧𝐸
𝑙
; either com-

plete or partial) must be prefetched back to the fast memory

before it is accessed again in the backward pass. It should

be ensured that the system can prefetch it back on time by

calculating a prefetch trigger time.

𝑡_𝑠𝑡𝑎𝑟𝑡_𝑝𝑟𝑒𝑙 = 𝑡𝑠𝐵
𝑙
−
𝑠𝑧𝐸

𝑙

𝑃𝑅
(8)

Here, 𝑡_𝑠𝑡𝑎𝑟𝑡_𝑝𝑟𝑒𝑙 is the time to start prefetching for the

tensor in layer l.

Scheduling prefetch request:While scheduling a prefetch-

ing request, we need to ensure that the prefetcher is not busy

in servicing other prefetch requests. To do so, the system

maintains a counter (𝑡_𝑏𝑢𝑠𝑦) that indicates till what time the

prefetcher is busy. In the beginning, 𝑡_𝑏𝑢𝑠𝑦 = 0 indicating it

is ready to service prefetch requests.

Now, for a successful prefetching of 𝑠𝑧𝐸
𝑙
:

𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ? =

{
Accept, 𝑠𝑧𝑃

𝑙
= 𝑠𝑧𝐸

𝑙
if 𝑡_𝑏𝑢𝑠𝑦 ≤ 𝑡_𝑠𝑡𝑎𝑟𝑡_𝑝𝑟𝑒𝑙 ,

Modify size else

(9)

Here, 𝑠𝑧𝑃
𝑙
is the size of the tensor that can be prefetched on

time accounting for 𝑡_𝑏𝑢𝑠𝑦.

Modify prefetching request: If the prefetcher is busy, the
size is modified to accommodate for 𝑡_𝑏𝑢𝑠𝑦. As the start time

of the layer in the backward pass cannot be modified and

prefetching earlier is not possible due to 𝑡_𝑏𝑢𝑠𝑦, modifying

the size of the request is the only possibility. Using Equation 8

𝑠𝑧𝑃
𝑙
≤ (𝑡𝑠𝐵

𝑙
− 𝑡_𝑏𝑢𝑠𝑦) ∗ 𝑃𝑅 (10)

5.3.3 Final eviction & prefetching. If 𝑠𝑧𝑃
𝑙
<= 0 then the re-

quest is dropped, else 𝑠𝑧𝑃
𝑙
is the final size of the tensor for

eviction and a prefetching which will be triggered at time

(𝑡𝑠𝐵
𝑙
− 𝑠𝑧𝑃

𝑙

𝑃𝑅
). 𝑡_𝑏𝑢𝑠𝑦 is updated to 𝑡𝑠𝐵

𝑙
to reflect the busy time.

6 Implementation
In this section, we discuss the implementation details of

TierTrain.
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Algorithm 1 Using hooks used in PyTorch by TierTrain

1: procedure forward_hook(𝑜𝑢𝑡𝑝𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟𝑠)
2: ⊲ Called at the end of every layer in forward pass

3: send_to_TierTrain(size, addr, timestamp)

4: end procedure
5: procedure backward_hook
6: ⊲ Called at the beginning of every backward pass

7: send_to_TierTrain(timestamp)

8: end procedure
9: procedure Main

10: 𝑚𝑜𝑑𝑒𝑙 ← create PyTorch model

11: ℎ𝑎𝑛𝑑𝑙𝑒 ←𝑚𝑜𝑑𝑒𝑙 .register_forward_hook
12: ℎ𝑎𝑛𝑑𝑙𝑒 ←𝑚𝑜𝑑𝑒𝑙 .register_backward_hook
13: end procedure

Table 2: Systems configuration

Optane System Settings
Model: Intel(R) Xeon(R) Gold 6238M DRAM: 768GB

CPUs: 4 Socket, 22 Cores, 2 HT Optane: 4.5 TB

CXL System Settings
Model: Intel(R) Xeon(R) CPU Max 9480 DRAM: 2 TB

CPUs: 2 Socket, 56 Cores, 2 HT CXL: 256GB

Software Settings
Linux Kernel: 6.6.3| Huge pages: always| DVFS: Performance | ASLR: Off

6.1 Data Profiling
We implement TierTrain in the PyTorch framework. Specif-

ically, we exploit framework “hooks" that are triggered ev-

ery time a layer execution begins and when tensors are

saved in the forward pass. This information is passed to

TierTrain, which is implemented as a daemon. We use the

standard forward_hook() and backward_hook() available

in PyTorch to implement these trigger points. Algorithm 1

shows a high level overview of hooks used by TierTrain.

6.2 Page Migration
TierTrain uses the standard move_pages [19] system to call

available in Linux to move pages between fast and slow

memory tiers (each tier is a NUMA node in Linux). To speed

up eviction and prefetching, multiple threads are used to

move pages across tiers. We experiment with different thread

count and analyze the impact on the numbers of tensors

selected or dropped for eviction. The sensitivity analysis

with respect to number of threads is provide in Section 7.6.2.

The implementation ensures that the eviction of identified

tensors is performed immediately after a layer finishes its

execution in the forward pass.

7 Evaluation
7.1 Experiment Setup
Table 2 lists the system configuration of our test beds. Ta-

ble 3 shows different configurations and input data set used

Table 3: Workloads used for evaluation.

Model Model Type DRAM (GB) Epoch Dataset
Avg. Peak (sec)

GAT GNN 79.5 120.4 344.6 ogbn-

productsGraphSAGE GNN 117 57.6 50.5

ViT Transformer 18.7 35.6 24.2

CIFAR-10

ResNet-34 CNN 21.7 31.3 35.5

ResNet-50 CNN 57.4 82.8 87

ResNet-152 CNN 110.7 170 170.1

for benchmarking along with epoch runtime, average and

peak memory usage in an all DRAM setup (all allocations on

DRAM) without tiering. These values serve as our baseline.

We use DRAM as fast memory tier and either Optane or

CXL-attached memory as the slow memory tier.

To evaluate TierTrain, we use the PyTorch Framework.

Specifically, we use the DGL [80] library to run a 4-layered
Graph Attention Network (GAT), 4-layered GraphSAGE Net-

work, torchvision [63] library to run ResNet34, ResNet50,

ResNet152, and the HuggingFace [82] library to run Vision

Transformer (ViT).

We compare the performance of TierTrain with memory

tiering solutions based on idle-bit tracking and hardware per-

formance counters. For the former, we use Memtierd [43], an

open source tiering solution, with the default page migration

policy. For the latter, we implemented a solution similar to

HeMem [67] that builds a hotness profile based on hardware

counters using Intel PEBS. Instead of a static threshold as

used in HeMem, we perform tiering with a dynamic hotness

threshold of 25-th percentile, i.e., in a profile window, all

the data pages with hotness more than the 25th%lie stays in

DRAM, and the rest is evicted to Optane.

We also compare TierTrain with AutoNUMA-based [16]

tiering. AutoNUMA recently introduced a tieringmodewhere

it can tier hot and cold data based on the hotness captured

using NUMA faults. Unfortunately, prior works focusing

on memory tiering for DNN training either have not made

their code public [68] or have outdated and unmaintained

dependencies [38] and hence we are unable to compare with

them.

7.2 Evaluation Strategy
Our evaluation strategy is as follow:

(1) Average and peak DRAM reduction:We measure the

capability of TierTrain to reduce average and peak DRAM

consumption. Reduction in average and peak DRAM con-

sumption demonstrates memory savings as such systems

can be provisioned with less costly DRAM.

(2) DRAM constraints: We measure the tiering efficiency

of TierTrain when the DNN training workload footprint
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Figure 7: Reduction in average and peak DRAMmemory for TierTrain comparedwithMemtierd, hardware counters
(PEBS), and AutoNUMA based memory tiering solutions. In the baseline setting the entire workload runs in DRAM
with tiering disabled
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Figure 8: Normalized runtime of TierTrain compared
to other tiering solutions. In the baseline setting the
entire workload runs in DRAM with tiering disabled

exceeds the DRAM capacity. This demonstrates the im-

pact of tiering in DRAM constrained scenarios i.e., when

DRAM is unable to cope with the capacity demands of

DNN training workloads thus requiring memory to be

expanded with slow memory.

(3) CXL memory:We evaluate on a real CXL-attached mem-

ory to future-proof our solution on emerging CXL mem-

ory technology. This also demonstrates the robustness of

TierTrain on memory media with different latency and

bandwidth characteristics.

In addition, our evaluation includes a deep-dive into the

TierTrain’s queuing system along with a sensitivity analysis

with different number of threads for migration.

7.3 Average and Peak DRAM Reduction
As can be seen in Figure 7, TierTrain outperforms Memtierd

by an average of 2× and 3.17× in terms of average DRAM and

peak DRAM usage, respectively, while improving the overall

epoch runtime by 66% (see Figure 8). TierTrain outperforms
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Figure 9: Memory footprint for a single epoch for
ResNet-34 for Memtierd and TierTrain. The dashed
red and blue vertical lines mark the beginning of for-
ward and backward pass

PEBS by an average of 2.5× and 4.5× in terms of average

DRAM and peak DRAM usage, respectively, while improving

the overall epoch runtime by 71% (see Figure 8).

Discussion:Memtierd tracks the idle bit in the page table

entry of a data page periodically and builds a hotness profile

based on that. However, it takes multiple scanning of the

address space to build a profile – and a tiering solution based

on that results in a delayed or sub-optimal tiering and hence,

Memtierd migrates only a small amount of data to Optane

(see Figure 9a). An aggressive address space scanning to

profile the bits in the page table entry consumes a lot of

compute resources and can severely impact the performance

of the DNN training workload [58].

TierTrain outperform Memtierd and PEBS as it relies on

hooks to extract data directly from the framework. Our mea-

surement shows that hooks incur a negligible overhead of

less than 0.05%. TierTrain’s non-telemetry based aggressive
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Figure 10: Performance comparison of TierTrain with
other tiering solutions inDRAM constrained setting for
ResNet 152. Tiering is disabled in the baseline. DRAM
capacity is 65GB, Optane capacity is 1.5 TB, and peak
memory footprint is 170GB.

eviction approach evicts saved tensors as soon as the com-

pletion of the execution of the layer. This can be seen by the

increase in the Optane memory consumption with the exe-

cution of each layer in the forward pass (Figure 9b). During

the backward pass, these tensors are moved from Optane to

DRAM in a timely manner before they are accessed again –

as seen by the drop in Optane consumption during the back-

ward pass. As, TierTrain manages to prefetch all the tensors

right before the corresponding layer in the backward pass

starts, the overall impact on the performance is also limited

to 2–16%.

7.3.1 Deeper Layers. As discussed in Section 4.2, as the net-

work grows deeper, the memory footprint increases. The

tiering opportunity also increases as❶ the number of tensors

that can be tiered increases and ❷ the idle time of tensors

also increases with starting layers having the largest idle

time. TierTrain efficiently leverages this increased tiering

opportunity. As shown in Figure 7a, for ResNet models when

the number of layers is increased from 18 to 34 and to 152,

the reduction in average DRAM usage also improves from

71% to 78%, and to 83%.

7.4 DRAM-Constrained Scenario
Memory consumed by DNN training workloads scales with

the complexity of the deep neural network and the size of

the training data, in which case, the memory footprint of

the workload might exceed the provisioned DRAM capacity.

In such DRAM constrained scenarios, data pages spills into

Optane memory. But as a hot data page placed in Optane

severely impacts the performance (see Section 4.5), tiering

solutions handle such scenarios by demoting cold data from

DRAM to Optane, making room for ❶ promoting hot data

from Optane to DRAM and ❷ future allocations in DRAM.

We demonstrates the efficiency of TierTrain in DRAM

constrained scenarios by off-lining DRAM memory blocks.

We bring down the total DRAM capacity to 65GB which is

less than the peak memory footprint of 170GB for ResNet-

152 model. Pages are allocated as per the default first-touch

allocation policy in the Linux kernel, where pages are first

allocated in DRAM before spilling over to Optane. Tiering is

disabled in the baseline.

It can be observed from Figure 10 that TierTrain outper-

forms Memtierd, PEBS, and AutoNUMA by 35%, 37%, and

84%, respectively in terms of epoch execution time. Figure 11

shows the memory distribution across DRAM and Optane

with baseline, AutoNUMA, Memtierd and TierTrain.

Discussion: We observe that AutoNUMA demotes ≈5GB
of data to Optane. However, increase in Optane memory

consumption in Figure 11 for AutoNUMA is due to spill over

from DRAM. Whereas TierTrain timely demotes ≈150GB
of data to Optane. Aggressive demotion of idle tensors by

TierTrain results in tensors for the subsequent layers allo-

cated in DRAM. As a result, the total number of Optane

accesses come down by ≈ 58% for TierTrain compared to

≈ 16% reduction for AutoNUMA (see Figure 12). The cycles

to serve L3 misses also drops by ≈ 62% for TierTrain com-

pared to ≈ 28% for AutoNUMA as more requests are served

from DRAM. The total number of dTLB page walk cycles

also sees an improvement, mainly due to page table pages

getting allocated in DRAM. As a result, the overall memory

stall cycles comes down by ≈ 72% for TierTrain compared to

≈ 30% for AutoNUMA.

7.5 CXL-Attached Memory Tier
CXL or Compute eXpress Link [73] is an upcoming mem-

ory interconnect that allows the memory in a system to be

scaled to terabytes. We evaluate TierTrain with a real CXL-

attached memory as a slow memory tier and DRAM as a fast

memory tier. As shown in Figure 13, the average and peak

DRAM reduces by 48–59% and 45–51%, respectively with a

performance overhead of 1–5%. In our test bed, the access

latency to CXL-attached memory is better than Optane and

hence results in a lower performance overhead as compared

to 14–15% overhead with Optane.

These set of experiments demonstrates that TierTrain’s

queuing system is robust in handling both CXL and Optane-

based slowmemory tiers. TierTrain efficientlymanagesmem-

ory tiering, which is evident from significant reduction in

average and peak DRAM consumption for both Optane and

CXL-attached memory tiers.

7.6 Deep Dive
We perform a deep dive analysis into some of the system

parameters of TierTrain including the performance impact

of number of threads used for migrating idle tensors from

DRAM to Optane and vice-a-versa.
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Figure 11: Memory distribution across DRAM and Op-
tane for a single epoch for ResNet-152 in a DRAM con-
strained setting. The dashed red and blue vertical lines
mark the beginning of forward and backward pass.
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7.6.1 Queuing System. As discussed in Section 5, we use

a constant “stay time" or ST in order to ensure that there

is no ping pong between fast and slow memory tier. ST de-

termines the minimum time an evicted tensor should stay

in the slow tier. We evaluate the impact of ST on DRAM

usage and application performance using ResNet-34 as the

representative workload. Table 4 shows how the size of total

tensors migrated varies with different values of ST. A value

of 0 for ST removes all the restrictions and hence, TierTrain

migrated all the saved tensors to slow memory tier. As the
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Figure 13: Comparison of average and peak DRAM re-
duction along with epoch runtime for CXL-attached
memory tier with TierTrain for ResNet models. Base-
line is all DRAM with memory tiering disabled.

Table 4: Impact of Stay Time (ST) on number of evic-
tion/prefetching requests for ResNet-34.

Stay Time (ST) #Dropped
requests

#Modified
requests

Migrated
data

0 sec 0 0 29.37 GB

1 sec 2 0 29.1 GB

5 sec 2 1 25.57 GB

10 sec 3 0 24.6 GB

20 sec 3 1 19.07 GB

value of ST increases, TierTrain imposes a strict constraint

on migrated tensors. As a result, TierTrain either starts drop-

ping requests or modifying them as per the queuing system

thus bringing down the amount of date migrated.

7.6.2 Sensitivity Analysis. Apart from ST, the amount of

data migrated between fast and slow memory also depends

on the number of threads used to migrated the data. Using

more number of threads (upto a certain limit) increases the

amount of data migrated in a given time window (i.e., mi-

gration rate in Equation 5). Hence, using more threads to

migrate data can speed up the overall migration process,

aggressively bringing down the average and peak DRAM

usage. However, it also increases the performance overhead

as the DNN training workload and tensor migration contend

for memory bandwidth.

We use ResNet-34 as the representative workload to show

the impact of different number of threads on the overall

memory savings and performance overhead. Table 5 shows

how varying the number of threads used to migrate idle

tensors affects DRAM consumption and the runtime of each

epoch. As the number of migration threads increase from 1

to 5, the amount of total migrated data increases from 13GB

to ≈ 30𝐺𝐵. However, page migration increases the total

number of dTLB flushes by 8.6×. This results in the total
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Table 5: Results showing sensitivity to the number of
threads used for migrating idle tensors for ResNet-34
with TierTrain

#Th- Data

DRAM

Reduction

Perf. Norm. TLB

reads Migrated Peak Avg. Ovh. flushes

1 13.4 GB 45.89% 36.56% 1.36% 1

2 26.7 GB 70.68% 52.33% 5.83% 4.1

4 28.6 GB 75.21% 56.87% 9.56% 7.9

5 29.5 GB 78.84% 59% 14% 8.6

Table 6: A summary of generic tiering solutions focus-
ing on memory tiers supported and page placement
policy.

Method Stats Trigger Summary

TMO [81] Stalls

LRU-

based

Reduce memory TCO by evicting

unused pages to swap.

Auto-

NUMA [55]

LRU &

NUMA

Faults-

based

Aims for efficient tiering based on

faults on DRAM and CXL devices.

HeMem

[67]

PEBS

Events-

based

Memory tiering based on a static

hotness threshold

Memtis

[52]

PEBS

Events-

based

Memory tiering based on hotness

reported by PEBS.

Memtierd

[43]

Idle-

bits

Events-

based

Memory tiering based on the idle

bits in PTE

performance overhead to also increase from 1.36% to 14%

due to higher number of dTLB misses.

8 Related Work
Several tiered memory systems have been proposed in recent

years [9, 10, 12, 22, 30, 34, 47, 49, 50, 52, 53, 55, 67, 81, 83],

along with data placement and migration policies to opti-

mize performance and memory TCO. A typical setting is that

a system is configured with a fast memory tier (DRAM or

HBM) and a slow memory tier (NVMM, compressed mem-

ory, or CXL). The tiering solutions aim to better utilize the

memory tiers present in a system by ensuring minimal per-

formance loss. The tiering solutions can be tuned to perform

tiering in a memory pressure condition [52, 55, 67] or reduce

fast memory costs by keeping only necessary data in the fast

memory [50, 81].

8.1 DNN-Specific Tiering
There is a plethora of work that looks at solving the issue of

limited GPU memory [2, 39, 51, 65, 70, 72, 79] by leveraging

CPU memory and doing efficient tiering so as to hide the

cost of accessing data in CPU memory from GPU. Prior work

in the space of memory tiering specific to DNN training (see

Table 7 ) either uses high-overhead telemetry [68, 70], a rigid

decision system bound to a particular model or set of memory

tiers [68, 85], is not scalable due to the high computations

associated with making the placement decision [38], has

an all-or-nothing migration policy [38, 68, 70, 85], is on the

critical path [38, 70], or cannot adapt to the dynamic nature

of the system [38, 44, 68, 70, 85].

Prior work [44, 68] uses a page-table scanning approach

to classify the data as hot cold. Any page table scanning

approach requires modification to the bits in a page table

entry and a TLB shootdown at a high frequency for the

whole execution duration to capture a precise memory access

pattern – resulting in a high performance ovheread [24, 58].

Model agnostic:A technique is scalable if the computational

complexity of the datamigration policy does not significantly

go up with the model size. AutoTM[38] optimizes training

runtime by mapping the network as an integer linear pro-

gramming (ILP). The ILP formulation is designed to assign

values to every tensor, deciding which memory tier they

should be placed in. The ILP formulation is computationally

expensive to solve and also becoming increasingly complex

to compute with an increase in model size.

Partial migration: Several prior work [38, 68, 70, 85] in

this space follows an all-or-nothing migration approach. Au-

toTM [38] assigns a value to each tensor (binary in case of a

two-tier system), which dictates in which memory tier the

tensor should be placed. AutoTM either migrates the whole

tensor or none of it, as per the results from the ILP solver. It

does not allow for partial migration of tensors.

Off Critical Path: AutoTM [38] performs tensor migration

by inserting "move nodes" into the computational graph,

which makes the tensor migration enter the critical path of

the application and increases its runtime. vDNN [70] evicts

tensors of a layer as soon as the layer’s forward pass is

done and prefetches it back before its backward pass begins.

However, the subsequent layer in the computational graph

cannot begin until the eviction and prefetch operations are

completely done, which leads to a performance loss of 58%

for their static DNN-based workloads.

Holistic Policy and Dynamic Tuning: A tiering solution

should be aware of all the dynamics of a system, such as

the characteristics of the memory tiers, the dynamic load on

the system, memory bandwidth utilization, etc. and should

dynamically adapt to the different execution conditions. Sen-

tinel [68] performs profiling of the first epoch and uses the

collected profile for the rest of epochs – a rigid approach

that is unaware of any execution changes due to resource

contention, remapping of data structures [8], or any other

system-level changes.

TierTrain does not require any changes to adapt to different

DNN training models, and the same queuing-based eviction

and prefetching framework can be used across models. The
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Table 7: Comparison with prior solutions for data tiering for DNN training

Method
Telemetry
Technique Policy

Model
Agnostic Scalable?

Partial
Migration

Holistic
Policy

Off Critical
Path

Dynamic
Tuning

AutoTM Graph Kernels ILP solver ✓ ✗ ✗ ✗ ✗ ✗

Deep UM Page Faults Correlation Prefetching ✓ ✓ ✓ ✗ ✓ ✗

Sentinel PTE poisoning Adaptive Migration ✗ ✓ ✗ ✗ ✓ ✗

vDNN Heuristics Closest layer ✓ ✓ ✗ ✗ ✗ ✗

CachedArrays Custom APIs User defined ✗ ✓ ✗ ✗ ✓ ✗

TierTrain Hooks Queuing model ✓ ✓ ✓ ✓ ✓ ✓

queuing system in TierTrain does not require large computa-

tion resources and hence, the complexity of it does not grow

with the model size. TierTrain also enables a key requirement

of efficient tiering – support for partial migration of tensors.

If eviction and prefetching of a whole tensor cannot be done

in a timely fashion, then the queuing model calculates an

optimal size, which is less than the original size that can

be safely evicted and prefetched back in a timely manner.

TierTrain executes the migration in the background through

a daemon process, ensuring it stays out of the application’s

critical path. It also receives feedback on whether the tensors

were evicted and prefetched back in a timely manner or not

and adjusts the eviction and prefetch triggers accordingly in

the next epoch.

9 Conclusion
With the increasing popularity of deep neural networks and

the increase in the cost of training a large network, there is

a thrust towards cost-efficient large network training. Due

to the memory requirement of training such large models,

the focus is shifting from computation to memory – which

the latest generation of GPUs is unable to fulfill.

In this paper, we proposed an exploratory idea to address

memory challenges by using CPU memory which can scale

to terabytes. Our work is a step in the direction of a radical

idea – training on CPUs, which opens it up to the general

masses and not to a few wealthy key players.

TierTrain is a novel memory tiering solution aimed at ad-

dressing the memory wall problem for DNN training work-

loads with CPU memory. TierTrain demonstrates open op-

portunities in optimizing memory management for DNN

training workloads with an efficient memory tiering solu-

tion based on a queuing system.
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