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Abstract
Tiered memory systems are the norm to effectively tackle
the increasing memory total cost of ownership (TCO) in
modern data centers. We propose TierScape to tame memory
TCO through the novel creation and judicious management
of multiple compressed memory tiers along with multiple
byte-addressable tiers.
As opposed to conventional tiering solutions that em-

ploy a single compressed memory tier, we harness multiple
compressed tiers implemented through a combination of
different compression algorithms, memory allocators for
compressed objects, and backing media to store compressed
objects. These compressed tiers represent distinct points in
the access latency, data compressibility, and unit memory
usage cost spectrum, allowing rich and flexible trade-offs
between memory TCO savings and application performance
impact. A key advantage with TierScape is that it enables
aggressive memory TCO saving opportunities by placing
warm data in low latency compressed tiers with a reasonable
performance impact while simultaneously placing cold data
in the best memory TCO saving tiers.
TierScape presents a comprehensive, rigorous, and tun-

able analytical cost model for performance and TCO trade-off
based on continuous monitoring of the application’s data
access profile. Guided by this model, TierScape takes in-
formed actions to dynamically manage the placement and
migration of application data across multiple compressed
and byte-addressable tiers. We believe TierScape represents
an important server system configuration and optimization
capability to achieve the best SLA-aware performance per
dollar for applications hosted in production data center en-
vironments. For a set of real-world benchmarks, TierScape
reduces memory TCO by 15.1–23.6% percentage points while
maintaining performance parity or improves performance
by 2.61–10.0% percentage points while maintaining memory
TCO parity compared to state-of-the-art tiering solutions.
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1 Introduction
Memory accounts for 33-90% of the total cost of ownership
(TCO) in modern data centers [2, 53, 54]. This cost is ex-
pected to escalate further to serve the growing data demands
of modern AI/ML applications whose working set already
breaks the terabyte barrier [47, 51], thus rendering it imper-
ative for data center operators to tame the memory TCO.
Henceforth, TCO savings refers to memory TCO savings.

Memory tiering is a viable and proven solution employed
in production data centers to effectively reduce TCO and
handle growing data demands of applications [26, 36, 38,
39, 42, 48, 49, 54]. The state-of-the-art solutions compress
and place data in a compressed second-tier memory, such
as zswap [10, 35] in the Linux kernel, to reduce memory
TCO [38]. Placing data in a compressed memory tier re-
duces the memory footprint of applications, thus reducing
the memory TCO, as systems can be provisioned with less
memory or can be packed with more applications. However,
such TCO savings are not free as the data stored in a com-
pressed tier must be decompressed before an application can
access it, resulting in a performance penalty. Hence, to trade
off memory TCO savings and performance penalties, data
center providers only place infrequently accessed or cold
data in the compressed tier [38, 54].
We highlight the following critical observations and key

limitations of the state-of-the-art solutions. ❶ On average,
20–30% of the data are cold in production systems [26, 38, 41,
42, 54] and hence, placing only cold data in the compressed
memory tier has limited memory TCO saving potential. ❷
As shown in Figure 1, aggressively placing more data pages
in the compressed tier can increase memory TCO savings
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Figure 1. For Memcached on a DRAM + compressed tier
system, conservative placement of 20% cold data yields 11%
memory TCO savings with 9.5% throughput slowdown. Mod-
erate placement of 50% (cold + some warm) improves savings
to 16% with 13.5% slowdown, while aggressive placement of
80% (cold + most warm) achieves 32% savings at 20% slow-
down. Color coding reflects access frequency: blue for cold
(zero accesses), red for hot (highest accesses), and gradients
for intermediate accesses.

but results in a significantly higher and unacceptable per-
formance penalty (> 5% [26]). ❸ Given the high cost of
accessing data from a compressed tier, existing tiering solu-
tions do not compress (or tier) warm pages, which account
for 50–60% [42, 54] of the data pages, thus leaving significant
memory TCO reduction opportunities on the table.

In this paper, we seek to exploit memory TCO saving op-
portunities beyond the cold data pages with an acceptable
performance penalty. We propose TierScape, a novel solu-
tion that harnesses multiple compressed memory tiers to
aggressively tame server memory TCO. TierScape dynam-
ically tunes and manages placement of data across multi-
ple compressed and byte-addressable tiers to strike the best
balance between memory TCO savings and application per-
formance. The compressed tiers can be a combination of
different compression algorithms (e.g., lzo-rle, deflate, lz4),
memory allocators for compressed objects (e.g., zsmalloc,
zbud, z3fold), and backing media to store compressed objects
(e.g., DRAM, non-volatile main memory [3], CXL-attached
memory [25, 27, 43]). TierScape’s compressed tiers are dis-
tinct in access latency, unit memory usage cost, and capacity
savings (compression ratio), enabling a holistic and flexible
option space for hot/warm/cold data placement. TierScape
thus compares very favorably to the rigid and restricted
data placement and optimization space available in today’s
state-of-the-art tiering systems.

TierScape enables aggressive memory TCO saving oppor-
tunities by placing warm data pages in low-latency com-
pressed tiers with reasonable performance impact while si-
multaneously placing cold data in the best memory TCO
saving tiers. TierScape applies different placement andmigra-
tion policies for warm/cold data based on the application’s
dynamic data access profile. For example, in our conservative

waterfall model, (§6.1) warm pages are initially placed in a
low latency compressed tier and eventually moved or aged to
compressed tiers with better TCO savings, thus progressively
achieving better memory TCO savings.
TierScape introduces a mathematical model that in real-

time enables a holistic and flexible option space for hot/war-
m/cold data placement to balance memory TCO savings
and application performance. TierScape periodically recom-
mends scattering pages across multiple tiers. The recommen-
dations to move specific groups of pages to specific tiers
are based on the access patterns of the application’s differ-
ent memory regions, along with the relative costs of page
accessed in different tiers and the real-time memory TCO
cost per tier incurred by the application. TierScape’s multi-
objective optimization enables superior placement and con-
trol of hot/warm/cold page sets and calibrated maximization
of performance-per-dollar metrics critical for data centers.

The key contributions of the paper are as follows:

1. To the best of our knowledge, we are the first to propose
and demonstrate memory TCO savings for warm data
with an acceptable performance impact.

2. Highlight the limitations with the state-of-the-art memory
tiering systems in saving memory TCO. Specifically, the
limited TCO savings with cold data and its incapability
to tap TCO saving opportunities for warm data with a
reasonable performance penalty.

3. Demonstrate the benefits of harnessing multiple com-
pressedmemory tiers that offer a rich and flexible trade-off
between memory TCO savings and application perfor-
mance impact with waterfall and analytical page place-
ment models.

2 Background – Compressed memory tiers
Linux kernel’s zswap [11, 35, 38] supports memory compres-
sion where pages are compressed and placed in a compressed
pool. Whenever a compressed page is accessed, zswap de-
compresses the data from the compressed pool and places
it in the main memory [10]. The Linux implementation of
zswap has two key components: (i) the compression algo-
rithm and (ii) the pool manager.

Compression algorithms. The Linux kernel supports dif-
ferent compression algorithms such as deflate, lz4, lzo, and
lzo-rle that differ in algorithmic complexity and the ratio
of data compression achieved. The deflate compression al-
gorithm offers one of the best compression ratios but con-
sumes comparatively higher CPU cycles to compress and
decompress the data [14, 15, 32]. On the other hand, the LZ4
compression method has a “level of effort” parameter that
can trade compression speed and compression ratio [15]. The
lzo compression method (and its evolved variant lzo-rle)
offers a balance between compression ratio and decompres-
sion overheads [9, 14, 16].
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Pool managers: A pool manager manages how compressed
pages are stored in a zswap pool. A pool is created in phys-
ical memory to store compressed data pages by allocating
pages using the buddy allocator [1]. The pool dynamically
expands to store more compressed objects by allocating more
pages or contracts as required. A pool manager manages the
compressed objects inside a pool. Linux supports three pool
memory managers: zsmalloc [24], zbud [11], and z3fold [17].
1. zsmalloc employs a complex memory management tech-

nique that densely packs compressed objects in the pool
and thus has the best space efficiency. However, it has
relatively high memory management overheads [24].

2. zbud is a simple and low overhead memory management
pool management technique that stores a maximum of
two compressed objects in a 4KB region – limiting the
maximum amount of total space saved to 50% [11].

3. z3fold is similar to zbud, but it can store three compressed
objects in a 4KB region [17] – allowing for a maximum
space savings of ≈ 66%.

Linux allows users to choose a compression algorithm and
pool manager for managing zswap. However, only one ac-
tive zswap pool is supported at a time [11]. When a new
compression algorithm or manager is configured, the kernel
creates a new pool for new compressed pages. The old pool
remains until all its data is invalidated [11].

3 Motivation
3.1 Missed opportunities for warm pages.
Data center operators report that around 10–20% of the data
are hot and 20—30% of the data are cold [26, 38, 41, 42, 54].
This implies that around 50–70% of the data pages are neither
hot nor cold but can be considered as warm pages. These
warm pages can be (i) pages with relatively fewer accesses
than hot pages or (ii) pages that are transitioning from hot to
cold – access profiling techniques typically employ gradual
cooling of hot pages by calculating the average hotness value
from past profiling windows [48]. Hence, hot pages do not
become cold instantaneously; rather, they are gradually aged
to warm and then cold. Existing tiering solutions do not
consider exploiting such warm pages for compression, thus
missing significant memory TCO-saving opportunities.

3.2 Drawbacks with aggressive data placement.
A naive approach to aggressively place more data in the
single compressed memory tier to increase memory TCO
savings results in a significantly higher and unacceptable
performance penalty (Figure 1). However, replacing a highly
compressible tier with one that has a low compression ratio
and low access latency tier can enable aggressive data place-
ment in the compressed tier. However, it severely impacts
the memory TCO savings due to low compression ratio.
Employing page prefetching [38] that prefetches or de-

compresses pages from compressed memory can mitigate

high-performance penalty to the extent of prefetching ac-
curacy. However, pages that the prefetcher fails to identify
for prefetching still incur high access latency when accessed,
and incorrectly prefetched pages result in decreased memory
TCO savings. Nevertheless, prefetching can be additionally
employed with TierScape and we note it as a future work of
interest for the systems community.

3.3 Latency and cost dimensions
In byte-addressable tiers such as CXL and NVMMs, data
access latency is purely determined by the memory media.
However, in the case of compressed tiers, the latency of the
first access to a page depends on decompression latency,
which in turn depends on the compression algorithm. Be-
cause, the page should be first decompressed and placed
in a target byte-addressable memory before accessing. But
subsequent accesses to the same page depend on the access
latency of the target byte-addressable memory tier.
In addition, for byte-addressable memory tiers, the unit

cost of storing the data depends on the memory media, while
the unit cost of storing the data in compressed memory tiers
depends on both the compression algorithm and compress-
ibility of the actual data. Hence, compressibility introduces
an additional dimension to be considered for tiering. For
instance, even if the page is cold, it is not beneficial to place
it in a compressed tier if the page is not compressible.

3.4 Why multiple compressed memory tiers?
Multiple compressed memory tiers enable application- and
data-specific customization. For example, multi-tenant cloud
systems host diverse workloads with varying compression
ratios—even across different virtual address regions within
the same application. A single compressed tier with a fixed
algorithm is thus suboptimal. Creating and harnessing mul-
tiple tiers with different compression algorithms can cater to
the wide range of data hosted in a typical production system.

4 Concept
The core concept behind our proposal is to create and harness
multiple compressed tiers in the software. Each compressed
tier is created through a combination of (i) compression
algorithms, (ii) memory allocator for the compressed pool,
and (iii) different backing media – each providing a different
access latency and memory cost per byte.

Compression algorithms. Compression algorithms with
low compression ratio and, consequently, a low decompres-
sion latency are suitable for low latency tiers, but they pro-
vide only marginal memory TCO savings. Whereas other
compression algorithms, such as deflate with high compres-
sion ratio and, consequently, high decompression latency,
are suitable for high memory TCO savings tiers but with
significantly high memory access latency.
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Table 1. Different options available in Linux for setting up a
compressed tier

Compression algorithm Allocators Backing media
Deflate, LZO, LZO-RLE,
LZ4, Zstd, 842, LZ4HC

zsmalloc,
zbud, z3fold

DRAM, CXL-attached
memory, NVMM

Pool allocators. Allocators that densely pack compressed
objects in the pool such as zsmalloc are suitable for high
memory TCO saving tiers, but they have high memory man-
agement overheads, thus impacting the decompression la-
tency. Allocators with simple and fast pool management such
as zbud are suitable for low latency tiers but are less space
efficient, resulting in tiers with low memory TCO savings.
Physical media. The access latency of the memory medium
storing compressed pages is critical to tier performance.
Storing them in DRAM offers the lowest latency [56], mak-
ing it ideal for low-latency tiers, but limits overall memory
TCO savings. In contrast, using cheaper, denser memory like
NVMMs or CXL-attached memory improves TCO savings
but increases decompression latency, making it suitable for
high-TCO-saving tiers. The key idea for enabling aggres-
sive memory TCO savings is to harness low-latency tiers
for warm pages, balancing performance and savings, while
using high-latency, high-compression tiers for cold pages.

5 Characterization of Compressed Tiers
We start by comparing the access latencies and memory TCO
benefits of compressed tiers with different configurations
in Linux. The Linux kernel offers only two configuration
parameters for a zswap compressed tier (compression algo-
rithm and pool manager) but does not offer any control over
on which hardware memory tier the pool (DRAM or NVMM)
is allocated. We extend zswap by adding a new configuration
parameter – backing media, which specifies the hardware tier
used for pool pages allocation.

The latency of decompressing a page from zswap is primar-
ily dominated by the compression algorithm, pool manager,
backing media, and the compressibility of the data. With
the available choices in Linux (as shown in Table 1), we can
create a total of 63 different zswap compressed tiers (7×3×3).
To demonstrate the distinct points in the access latency,

data compressibility, and unit memory usage cost spectrum
we characterize 12 tiers configured based on widely used
compression algorithms and pool managers. We initialize
10GB of data in memory, compress and place them in a
compressed memory tier and then measure access latency
and compression ratio. We repeat this experiment for all
12 tiers using two Silesia corpus data sets [8], nci (highly
compressible [22]) and dickens.
Access latency. Figure 2a shows the access latency for both
nci and dickens data sets. Access latency with the lz4 algo-
rithm is the fastest, followed by lzo, and lastly, deflate. As

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

NCI

(a) Access latency

Z
B

-L
4

-D
R

Z
B

-L
4

-O
P

Z
S
-L

4
-D

R

Z
S
-L

4
-O

P

Z
B

-L
O

-D
R

Z
B

-L
O

-O
P

Z
S
-L

O
-D

R

Z
S
-L

O
-O

P

Z
B

-D
E
-D

R

Z
B

-D
E
-O

P

Z
S
-D

E
-D

R

Z
S
-D

E
-O

P0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d

 T
C

O
 c

o
st

v
s.

 D
R

A
M

DRAM

NCI

Dickens

(b)Memory TCO savings

Figure 2. Characterization results for 12 different com-
pressed tiers for dicken and nci data sets. Encoding: ZS, ZB
refers to zsmalloc and zbud pool managers, respectively. L4,
LO, DE refers to lz4, lzo, and deflate compression algorithms,
respectively. DR, OP: refers to DRAM and Optane [3] as the
backing storage media, respectively.

expected, the performance of zbud pool manager is better
than zsmalloc as zbud employs a simple algorithm that en-
ables faster page lookup. Finally, the access latency of DRAM-
backed tiers is better than those backed by the Optane [3]
due to the higher media access latency in the latter [20]. For
comparison, accessing a page out of DRAM has an average
latency of ≈ 33ns.
Memory TCO savings. Figure 2b shows the normalized
memory TCO savings of compressed tiers relative to uncom-
pressed data in DRAM. Total TCO savings depend on data
compressibility, compression algorithm, and backing media.
The cost per gigabyte for storing data on Optane is typically
1/3 ∼ 1/2 of the cost of storing data on DRAM [45]. Hence,
the memory TCO for Optane-backed tiers is lower than that
of DRAM-backed tiers.
Furthermore, for tiers using the same compression algo-

rithm and backing media the TCO savings depend on the
pool manager for the compressed pool. For example, a tier
using zsmalloc as its pool manager has a lower memory
TCO than a tier using zbud. This is because zsmalloc can
pack compressed objects more tightly. Finally, the deflate
compression algorithm offers the best compression ratio.
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5.1 Compressed tiers selection methodology
For our experiments, we use compressed tiers as used in
production data centers: (i) lzo with zsmalloc by Gswap [38]
(C7 in Figure 2a), and (ii) zstd with zsmalloc by TMO [54].
It is important to note that prior works such as Gswap and
TMO create and use only one compressed tier backed by
DRAM memory at all the times. However, to illustrate the
rich and flexible placement opportunities and robustness
of the TierScape proposal, we also select and experiment
with four additional compressed tiers (C1, C2, C4 and C12
in Figure 2a) that are used simultaneously along with byte
addressable tiers.
C1 & C12: We pick C1 as it offers the best performance
and C12 for its best memory TCO savings. Other tiers with
deflate compression algorithms offer a similar performance
latency without additional TCO benefits, and hence we do
not select any other deflate-based tiers.
C2:We select C2 as it offers the lowest latency for an Optane-
backed compressed tier.
C1 & C2: C1 and C2 use zbud and lz4 as their pool manager
and compression algorithm – restricting the compression
ratio to 2. Hence, we select C4, which uses a fast compres-
sion method (lz4), tightly packs compressed objects (due to
zsmalloc), and is stored on low-cost Optane.

6 Data Placement Models
In this section, we present two distinct data placement mod-
els that fully harness the benefits of multiple compressed
tiers. The first is theWaterfall model (§6.1), inspired by an ex-
isting approach that supports only multiple byte-addressable
tiers [36]. We extend it to include compressed memory tiers.
The second is the TierScape analytical model (§6.2).

For simplicity, we assume a system with one DRAM tier,
𝑁 byte-addressable tiers, and 𝑀 compressed tiers, though
the models can be extended to other memory types, such as
HBM. Tiers are ordered from low to high latency (and corre-
spondingly, low to high memory TCO savings), with DRAM
offering the best performance but the least TCO savings.

6.1 Waterfall model
Prior memory tiering solutions use a static hotness threshold
(𝐻𝑡ℎ) to decide which pages should be demoted or promoted
from the DRAM tier to other tiers. An aggressive threshold
value (a high value for 𝐻𝑡ℎ) demotes more pages to the slow
memory tier, saving additional memory TCO but at the cost
of high performance penalty due to multiple high latency
page accesses from the slow tier.
AutoTiering [36] defines static paths of promotion and

demotion across multiple NUMA nodes. We extend this ap-
proach to leverage multiple compressed memory tiers. Wa-
terfall model monitors the pages accesses for a fixed duration
– a profile window – and classifies pages with access count
greater than or equal to the threshold (𝐻𝑡ℎ) as hot pages and
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Figure 3. A high-level working of the Waterfall model
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Figure 4. Page placement with the analytical model.

rest as cold pages. The value of profile window may require
tuning based on application characteristics.
Promotion and demotion: At the end of the first profile
window, all the cold pages are moved from DRAM to the
next tier (say T1, as shown in Figure 3). This reduces the
total memory TCO as some data pages have been placed in
a relatively low-cost tier compared to the DRAM tier. After
the end of the second profile window, all the hot pages in T1
are moved back to DRAM. All the remaining pages in T1 are
then demoted (or waterfalled) to T2. This further improves
the memory TCO savings as T2 is better than T1 in terms
of memory TCO savings. At the end of each profile window,
the model promotes all the hot pages to DRAM. Other pages
in all the tiers are waterfalled to one tier below it (to a higher
TCO saving tier), except for the last tier. Pages that are moved
back to DRAM start their journey from T1 to the last tier
again if they become cold.
Discussion: The Waterfall model has an upfront memory
TCO savings as all the “cold” pages are immediately placed
in a relatively low-cost tier compared to DRAM. Pages are
gradually moved to tiers with better memory TCO savings.
However, as cold pages are gradually aged to the best TCO
saving tier, the model misses the opportunity to aggressively
place cold pages directly in best memory TCO saving tiers.

6.2 TierScape’s analytical model
We propose TierScape, an analytical data placement model
that directly distributes pages (see Figure 4) across differ-
ent memory tiers based on the hotness profile of the data.
In addition, the model provides fine control to the users to
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Figure 5. Tuning memory TCO with a knob in TierScape’s
analytical model.

balance the trade-off between memory TCO savings and per-
formance penalty by exposing a user-guided tunable “knob”.

6.3 Memory TCO and performance tuning
As shown in Figure 5, the range of the knob is [0, 1]. A value
of 1 indicates the model is tuned for maximum performance,
which results in zero memory TCO savings as all data pages
are placed in DRAM. On the other hand, a value towards 0
indicates that the model is tuned to maximize TCO savings
while striving to minimize performance penalty.

6.4 Data placement modeling
The analytical model is initiated with a knob value – say 𝛼
∈ [0, 1]. The theoretical memory TCO savings achievable
is the difference between TCO𝑚𝑎𝑥 – when all the data is in
DRAM and TCO𝑚𝑖𝑛 – when all the data is in the last tier. The
maximum TCO savings (or MTS) can be defined as follows:

MTS = TCO𝑚𝑎𝑥 − TCO𝑚𝑖𝑛 (1)

The analytical model can be tuned to achieve TCO savings
within [0, MTS ] by configuring 𝛼 . At the end of each profile
window, the model uses 𝛼 and the profiled data to solve the
following Integer Linear Program or ILP:

minimize 𝑝𝑒𝑟 𝑓 _𝑜𝑣ℎ
subject to TCO ≤ (TCO𝑚𝑖𝑛 + 𝛼 ∗MTS) (2)

To solve Equation 2, we start by formally defining perfor-
mance overhead (𝑝𝑒𝑟 𝑓 _𝑜𝑣ℎ) and the memory TCO.

6.5 Modeling performance overheads
An application executes optimally (in terms of memory ac-
cesses ) when all its load operations are directly from DRAM
(instead of a slow tier). We refer to this performance as
𝑝𝑒𝑟 𝑓 _𝑜𝑝𝑡 .

For ease of discussion, consider a system with 3 memory
tiers: DRAM (TD), NVMM (TN), and a compressed memory
tier (CT). The optimal performance will be when all the mem-
ory accesses are from DRAM:

𝑝𝑒𝑟 𝑓 _𝑜𝑝𝑡 = MemAcc𝑡𝑜𝑡 ∗ LatTD (3)

Here, MemAcc𝑡𝑜𝑡 is the total number of memory accesses, and
LatTD is the latency of DRAM. However, when all the tiers

are in use, the performance can be defined as:

𝑝𝑒𝑟 𝑓 ′′ = MemAccTD ∗ LatTD + MemAccTN ∗ LatTN
+ MemAccCT ∗ (LatCT + LatTD) (4)

Here, MemAcc{TD/TN/CT} are total memory accesses fromDRAM,
NVMM, and the compressed tier, respectively, and they sum
up to MemAcc𝑡𝑜𝑡 . LatTN and LatCT are the access latency for
NVMM and compressed tier, respectively. A page in a com-
pressed tier needs decompression before it can be accessed.
Hence, a page from a compressed tier is always placed in
DRAM after decompression (if there is space). Hence, the
total cost of accessing a page is the latency of decompressing
and reading it from DRAM. However, it is also possible to
place a decompressed page in NVMM (when DRAM is full).
In that case, the additional latency will be the latency of the
NVMM tier. The performance overhead can be defined as:

𝑝𝑒𝑟 𝑓 _𝑜𝑣ℎ = 𝑝𝑒𝑟 𝑓 _𝑜𝑝𝑡 − 𝑝𝑒𝑟 𝑓 ′′ (5)
= (LatTN − LatTD) ∗ MemAccTN + LatCT ∗ MemAccCT
= 𝛿TN ∗ MemAccTN + LatCT ∗ MemAccCT (6)

Here, LatCT is the latency of accessing a page from the
compressed tier and placing it in DRAM.
Generalization: Say there are 𝑁 byte-addressable tiers and
𝑀 compressed tiers in a system. In such systems, the total
performance overhead will be:

𝑝𝑒𝑟 𝑓 _𝑜𝑣ℎ =

𝑁∑︁
𝑥=1

(𝛿TN𝑥 ∗ MemAccTN𝑥 ) +
𝑀∑︁
𝑦=1

(LatCT𝑦 ∗ MemAccCT𝑦 )

(7)
Here, 𝛿TN𝑥 is the latency difference between DRAM and TN𝑥 .
Note that the latency of DRAM will always be smaller as,
by definition, it is the fastest tier in our setup. Hence, 𝛿 will
always be a positive number.

6.6 Modeling TCO
Again, for ease of discussion, consider a 3-tier system with
the same tier configuration as earlier. The total memory TCO
can be reduced by placing some pages in the NVMM and
compressed tier.

TCO = PTD ∗ USDTD + PTN ∗ USDTN
+ PCT ∗ CCT ∗ USDCT (8)

P𝑡𝑜𝑡𝑎𝑙 = PTD + PTN + PCT (9)

Here, P𝑡𝑜𝑡𝑎𝑙 is the total number of pages. PTD, PTN, and PCT are
the number of pages in the DRAM, NVMM, and compressed
tier respectively. CCT ∈ (0, 1] is the compression ratio1 of
the tier. The cost of storing a page in the compressed tier is
reduced by the compressibility of the data on that tier.

1Ratio of compressed size to original size. It cannot be more than 1 as zswap
implementation rejects highly uncompressible objects.
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Generalization: Say a system has 𝑁 byte-addressable tiers
and𝑀 compressed tiers. In such systems, total memory TCO

TCO = PTD ∗ USDTD +
𝑁∑︁
𝑥=1

(PTN ∗ USDTN) +
𝑀∑︁
𝑦=1

(PCT ∗ CCT ∗ USDCT)

(10)

As in prior work [38, 42, 48, 54], the model assumes that
the number of memory accesses to pages in the next profile
window remains proportional to the accesses seen in the last
profile window.

6.7 Discussion
We account for the cost of page migration in a separate
filter that pre-processes the output of the ILP model before
triggering migrations. We avoid adding constraints in the
ILP model to handle such scenarios as it makes ILP solving
more time-consuming and computationally intensive. The
filter ensures that the number of pages placed in a tier is
bounded by the tier capacity and also considers resource
contention on memory tiers and avoids moving pages to
already pressured tiers. We briefly discuss the key benefits
of the TierScape’s ILP-based analytical model.
Fine tuning memory TCO and performance penalty trade-off:
Analytical model offers a tunable knob (𝛼) which can be
configured as per the requirement of the user. The "knob"
conveys the amount of TCO targeted to be saved while striv-
ing to minimize performance loss.
Quick convergence: The model quickly converges to optimal
data placement based on the profiled hotness of the data.
Cold data are directly placed in the most optimal tier as per
the constraints instead of "waterfalling" on multiple tiers.

7 Implementation
7.1 Linux kernel changes
Tier’s backing media: As discussed in Section 2, the Linux
kernel configures a compressed memory tier using the com-
pression algorithm [35]. We augment the zswap subsystem
to add an additional parameter to specify a backing media
which can be NVMM or CXL-attached memory. With this
compressed objects can be allocated on any hardware-based
memory tiers allowing more flexibility in performance and
memory TCO savings tradeoff.
Multiple active compressed tiers: Linux kernel only sup-
ports a single active zswap tier. Upon creation of a new com-
pressed tier, all new data compression requests are directed to
the newly created tier. The kernel deletes the old tiers if they
are empty. We modify the zswap subsystem to support mul-
tiple active compressed zswap tiers and also allow multiple
compressed tiers to coexist. We augment the struct page
structure with a 𝑡𝑖𝑒𝑟_𝑖𝑑 field which is updated by a modified
madvise() function. During page compression, the zswap
module reads this field and places the compressed page in
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Figure 6. A high-level working of TierScape.

the intended tier. During decompression, the swap entry
contains the tier information, including the pool details and
other relevant information to handle the fault [35].

Page migration between tiers: We enhance the kernel
to allow the migration of pages between two compressed
tiers. Currently, we follow a naive approach while migrating
pages between compressed tiers by first decompressing the
page from the source tier and then compressing it again
and placing it in the destination tier. This can be further
optimized by skipping the decompression step if the source
and destination tiers use the same compression algorithm.

Tiers statistics: We added support in the zswap subsystem
to collect per-tier statistics such as the number of pages in
the tier, the size of the compressed tier, and total faults.

7.2 TS-Daemon
As shown in Figure 6, we implement our TierScape logic as a
daemon (TS-Daemon). TS-Daemon uses the hardware coun-
ters to profile the memory access pattern of an application
for a fixed time window (profile window). Specifically, it uses
Intel PEBS [34] to monitor MEM_INST_RETIRED.ALL_LOADS
and MEM_INST_RETIRED.ALL_STORES. These events report
the virtual address of the page on which the event was gener-
ated [7]. We use a sampling rate of 5K, which provides a good
balance of sample quality and performance overhead [48].
Based on the collected profile, TS-Daemon applies the

Waterfall or TierScape placement model on the collected
hotness profile to decide the destination tiers for the memory
regions. Based on the model’s outcome, TS-Daemon uses the
kernel APIs described above to manage memory placement.

Regions. In order for efficient management of the address
space of an application, TS-Daemon operates at a granularity
of 2MB regions instead of 4 KB pages as commonly followed
in other memory tiering solutions [48]. The hotness of 2MB
region is an accumulated value of the hotness of each 4KB
page in it. TS-Daemon performs data migration to and from
compressed tiers at the granularity of 2MB regions.
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Table 2. Description of the workloads and configurations.

Workloads Description RSS
Memcached [12] A commercial in-memory object caching

system.
42GB/
58GB

Redis [13] A commercial in-memory key-value store. 90GB
BFS [50] Traverse graphs generated by web

crawlers. Use breadth-first search.
30GB

PageRank [50] Assign ranks to pages based on popularity
(used by search engines).

30 GB

XSBench [52] A key computational kernel of the Monte
Carlo neutron transport algorithm

119GB

GraphSAGE [30] A framework for inductive learning on
large graphs.

40GB

7.3 Data placement models
Waterfall model.We implement the waterfall model in the
TS-Daemon. The input to the model is a hotness threshold
value – 𝐻𝑡ℎ . The value controls the pages that are to be
evicted from, for example, DRAM to Tier 1. TS-Daemon
maintains the tier data for all the regions and uses it to
waterfall (demote to the next tier) the regions at the end of a
profile window.
Analytical model.We implement the analytical model in
C++ using the OR-Tools from Google [46]. The input to the
model is the hotness profile of the application, tier stats (e.g.,
compressibility ratio, cost of the media backing the com-
pressed tier, and access latency), list of regions, and a value
for the knob (𝛼). The model outputs a recommendation with
a destination tier for each region. We discuss the overhead
of the ILP solver in Section 8.4.

8 Evaluation
We demonstrate the capability of TierScape for holistic and
flexible data placement across multiple tiers with two distinct
tier configurations.
1. Standard mix of tiers: We use two byte-addressable
tiers (DRAM and Intel Optane) along with two compressed
tiers. Compressed tier CT-1 is based on Gswap [38] and
CT-2 is based on TMO [54](§ 5.1). CT-1 is a low-latency, low-
compression tier with physical backing media as DRAM –
ideal for storing warm pages. CT-2 is a high-latency, high-
compression tier with Optane as the physical backing media
– ideal for storing cold pages.
2. Spectrum of compressed tiers: To demonstrate the capa-
bility, TierScape we experiment with six memory tiers: one
byte-addressable tier (DRAM) along with five compressed
tiers: C1, C2, C4, C7 and C12 (refer to Section 5.1 and Fig-
ure 2a for details).

8.1 Experiment setup
We have implemented a modified version of HeMem [48],
Gswap [38], and TMO [54] – henceforth referred to asHeMem∗,
GSwap∗, TMO∗, respectively – to compare against TierScape.

We use telemetry from Intel PEBS [34] as the common page
access profiling data for a fair comparison. HeMem∗, GSwap∗,
and TMO∗ star uses NVMM, CT-1, and CT-2 as the slowmem-
ory tier, respectively.
Hotness threshold: Instead of a static threshold, which is
not optimal for different applications and may cause unex-
pected performance overhead [26], we use a percentile-based
tiering threshold of 25𝑡ℎ percentile for the prior works. In
a profile window, any region with an access count value
exceeding the 25𝑡ℎ percentile will be promoted to DRAM.
All the other regions will be pushed to the slow memory
tier. For the Waterfall model, we use the same threshold of
25𝑡ℎ percentile to determine promotion/demotion between
memory tiers. For the analytical model, we evaluate with
two different configurations for the tunable knob (𝛼); a small
value indicates the TCO-preferred setting (AM-TCO) and a
large value indicates preference for performance (AM-perf).
System setup.We use a tiered memory system with Intel
Xeon Gold 6252N with 2 sockets, 24 cores per socket, and
2-way HT for a total of 96 cores. It has a DRAM-based fast
memory tier with 384 GB capacity and an NVMM memory
tier with Intel’s Optane DC PMM [3] configured in flat mode
(i.e., as volatile main memory) with 1.6 TB capacity. We run
Fedora 30 and use a modified version of Linux kernel 5.17.
Workloads: Table 2 shows the real-world benchmarks and
their configuration used to evaluate TierScape. For Mem-
cachedwe use two differentworkload generators: memtier [5,
13] and YCSB [23]. We initialize Memcached with ≈42GB
of key-value pairs with a size of 1 KB for YCSB and 1KB
and 4KB for memtier. We use “workloadc” to load the data
and generate access requests using a Zipfian distribution for
YCSB. For memtier, we generate the requests in a Gaussian
distribution [6]. We report the throughput and latency num-
bers as reported by memtier and YCSB. We use PageRank
and BFS from the Ligra suite of graph benchmarks [50]. In-
put graphs for both graph workloads are generated using
the standard rMat graph generator [4]. We report the geo-
metric mean of the time taken to execute multiple rounds.
For XSBench, we use the XL option as provided by the work-
load [52] and for GraphSAGE, we use the ogbn-products
dataset [33] as the input.
TCO calculation: We use Equation 8 to calculate the mem-
ory TCO. We capture the size of DRAM, NVMM, and all the
compressed memory tiers to compute the cost of storing data
in the respective compressed tiers. We set the per-GB cost
of NVMM as 1/3 of DRAM [45].

8.2 Standard mix of tiers
Figure 7 compares relative performance and memory TCO
savings for different tiering techniques. Note that values on
the x-axis are on a decreasing scale. the analytical model,
in its TCO-preferred setting (AM-TCO), outperforms both
traditional tiering solutions and Waterfall model in terms
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(c) Memcached + YCSB
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Figure 7. Performance slowdown and memory TCO savings w.r.t to DRAM for different tiering techniques. Points towards the
top-right corner of the plots are optimal (indicating high memory TCO savings and a low performance overhead). The lines
connecting AM-TCO and AM-perf are for ease of readability and comparison.

of performance and memory TCO savings. AM-perf outper-
forms traditional tiering solutions and Waterfall by 73% and
108% in terms of performance, and by 45% and 24% in terms
of TCO savings, respectively. In AM-perf, the performance of
the workloads is improved by an average of 319.39% and 403%
compared to traditional tiering solutions and the Waterfall
model, respectively.

Better TCO savings with similar performance: In Mem-
cached (memtier with 1K key value size), the maximum
memory TCO savings is 29.94% with HeMem∗. But it suffers
a ≈ 23.01% performance slowdown. The Waterfall model
achieves a TCO saving of ≈ 24.01% while incurring a perfor-
mance loss of ≈ 18.34%. AM-TCO achieves a TCO savings of
30.00% while incurring a performance loss of 17.18%. AM-
perf achieves a TCO savings of 12.17% while incurring a
performance loss of just 4.84%.
Better performance with similar TCO savings: In PageR-
ank, in a tiering system, GSwap∗ offers the least perfor-
mance slowdown of 11.35% while saving 25.91% memory
TCO. HeMem∗ offers the highest amount of TCO savings,
46.27%, but a high performance cost of 30.87%. Waterfall
offers a TCO savings of 28.57% with a performance over-
head of 24.65%. Whereas, AM-TCO incurs a performance
slowdown of 6.04% while saving 39.27% of memory TCO.
AM-perf incurs a performance slowdown of only 4.04% and
offers a memory TCO savings of 5.09%.

8.2.1 Page placement recommendations. We analyze
the TierScape’s placement recommendation.

Waterfall model: Figure 8a shows the Waterfall recommen-
dation in each profiling window for Memcached with YCSB.
We see a good utilization of all the memory tiers. This is
because data is demoted from DRAM and is “waterfalled”
between the tiers, eventually reaching the last tier. Here, it
can be observed from Figure 8a that pages are first “water-
falled” to the NVMM tier, and then they are gradually aged
to better memory TCO-saving tiers, resulting in a reduction
in memory TCO (see Figure 8b). Note that the TCO plot just
shows DRAM and NVMM as compressed tiers are also stored
on these memory tiers. A compressed tier on DRAM will
result in lower memory TCO due to compression.

(a) Waterfall recommendation
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Figure 8. Data placement recommendations for Memcached
with YCSB byWaterfall and the corresponding memory TCO
savings.

AM-TCO model: AM-TCO, based on the hotness profile,
number of faults to the compressed tiers, data compressibil-
ity, and access latency of each tier, it recommends placing
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(c) Faults in compressed tiers
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Figure 9. Figure showing (a) AM-TCO model recommen-
dations for page placement, (b) actual page placements in
different tiers, (c) faults in the compressed tiers, and (d) mem-
ory TCO trend for Memcached with YCSB with AM-TCO.

less than 5% of data in DRAM and the rest in other tiers
(Figure 9a). It consistently recommends placing most of the
pages either in the NVMM tier or CT-2 the tier. Figure 9a
shows the recommendation for placing Memcached (with
YCSB) pages in DRAM, NVMM, and compressed tiers using
AM-TCO configuration. The rationale behind the recom-
mendation decision can be understood based on the hotness
pattern in Figure 9d. Only a small set of pages are hot or
warm, and the rest are cold. Hence, AM-TCO recommends
placing most of the data either in the NVMM or CT-2 as CT-1
is stored on DRAM and has a higher cost associated with it.

8.2.2 Deep dive. We pick Memcached/YCSB, a unique
case where the ground reality does not reflect the model’s
recommendation (Figure 9b), to do a deep dive. Figure 9b
shows the actual distribution of the pages across the tiers
after migrating the pages as per the recommendations. Here,
we see that most of the pages are placed in the NVMM tier,
although the model recommends placing a significant num-
ber of pages in CT-2. To understand this behavior, we look at
the trend of faults to the compressed tiers in Figure 9c which
shows the cumulative faults incurred in both the compressed
tiers. Here, we can see that the total number of faults to CT-2
keeps increasing. This indicates that pages are being moved
to CT-2; however, due to the shifting memory access pat-
tern (see Figure 9d), they are immediately faulted upon and
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𝛼=0.8

𝛼=0.6

𝛼=0.5

𝛼=0.4

AM

Figure 10. Performance of TierScape’s analytical model for
with different values for the tuning parameters (𝛼) – indi-
catedwith different colors, forMemcachedwith YCSB. Figure
also shows performance of HeMem∗, GSwap∗, TMO∗ and
Waterfall model for two different values of hotness threshold
indicated by two different colors – and .

moved to DRAM/NVMM. Therefore, despite TierScape’s mi-
gration of pages to CT-2, as advised by the AM-TCO model
(Figure 9a), due to the application’s access pattern continu-
ously shifting (Figure 9d), the application’s access pattern
almost immediately triggers a fault on the compressed tier.
However, if the access pattern remains stable, which is the
case in other benchmarks, the ground reality almost reflects
the model recommendation.

8.2.3 Multi-objective tuningwithTierScape. To demon-
strate the capability of the knobs we tune it with five different
knob values that achieve different memory TCO savings with
corresponding performance overhead (as shown in Figure 10)
We also execute Waterfall and other tiering solutions with
two different hotness threshold values (25𝑡ℎ and 75𝑡ℎ per-
centile). TierScape consistently outperforms two-tier models
and Waterfall model in terms of achieved TCO savings and
incurred performance overhead. In addition, TierScape also
demonstrates the achievable spectrum of performance and
TCO benefits points.

8.2.4 Impact on the tail latencies. One of the key re-
quirements in a data center is to maintain an SLA guarantee
on the tail latencies of an application. In TierScape systems,
the total number of faults in the slowest tier can impact the
tail latency of the application. Figure 11 shows the average,
95𝑡ℎ and 99.9𝑡ℎ percentile latency for Redis as reported by
YCSB. It can be observed that both the configurations of Tier-
Scape outperform all tiering solutions placement models and
Waterfall. TierScape carefully scatters the pages across tiers
based on the hotness values of the pages. Hence, it performs
better than tiering and Waterfall.
TMO∗ vs. HeMem∗: The average latency for TMO∗ is lower
than HeMem∗, even though the former uses a compressed
tier on NVMM, whereas the latter directly uses NVMM. This
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Figure 11. Latency data for Redis normalized to DRAM.

is because, in TMO∗, the page is promoted from the com-
pressed tier after the first fault and placed in DRAM. As a
result, all the subsequent accesses to the page will be from
the fast DRAM tier. Hence, the average latency of TMO∗ is
less than that of HeMem∗.

8.3 Spectrum of compressed tiers
We demonstrate TierScape’s performance when six tiers
(DRAM with five compressed tiers) are used. We compare
the performance of TierScape’sWaterfall (WF) and analytical
model (AM) with GSwap∗ tiering (GS). Each tiering solution
is executed in three settings: conservative (-𝐶), moderate (-𝑀)
and aggressive (-𝐴) settings by varying the hotness threshold
(25, 50, and 75 percentile and 𝛼 value as 0.9, 0.5, and 0.1).
Figure 12 shows the data placement recommendation for
TierScape’s placement model.
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Figure 12. Data placement recommendations for Mem-
cached by waterfall and analytical models with three dif-
ferent aggressiveness for memory TCO savings.

8.3.1 TCO savings and Performance overheads. Tier-
Scape’s outperforms GSwap∗ by saving more memory TCO
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Figure 13. Performance slowdown and TCO savings w.r.t.
DRAM, GSwap∗, Waterfall, and analytical model with six
memory tiers. Colors , , and indicate different hot-
ness thresholds with increasing aggressiveness, respectively.

with similar or better performance or with better perfor-
mance at a similar or better TCO (see Figure 13).
TCO savings at similar performance: For example, the
maximum TCO savings GS-A offers for Redis is 34.84% with
a performance slowdown of 18.33%. On the other hand, WF-
A achieves a TCO saving of 56.11% (21.27 percentage points
better) while incurring a performance loss of 19.48% (only
1.15 additional percentage points).
Better performance with similar or more TCO savings:
In PageRank, GS-C offers the least performance slowdown of
21.82% while saving 24.86% memory TCO. Whereas, WF-C
offers a better trade-off than GS-C with 13.09% performance
slowdown and 40.78% memory TCO savings. AM-C, incurs
performance slowdown of only 14.91% and offers a TCO
savings of 21.26% Also, it can be observed in BFS that AM-𝐴
and GS-𝑀 result in around 63% memory TCO savings, but
the former performs better by 4.05 percentage points (22.15%
vs. 18.10%). This demonstrates that with TierScape, more
warm pages can be placed in compressed tiers to achieve
better memory TCO savings without hurting performance.

8.3.2 Why multiple compressed tiers? A particular set
of tiers may benefit one application, and for some other ap-
plication, a completely different tier might make sense. We
observe different levels of TCO benefits and performance
overheads when using 2 compressed tiers (Figure 7) vs. when
using 5 compressed tiers (Figure 13). For example, with the
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Figure 14. Performance impact due to TS-Daemon (which
includes profiling + modeling + migration) in TCOmode and
perf mode and with ILP solver on the local machine or on a
remote machine. Notation: AM-{TCO/perf}-{Local/Remote}.
Baseline is no profiling and no migration.

additional compressed tiers, the total achievable TCO bene-
fits for Memcached and Redis increased to 55% and 65% from
40% and 30%, respectively.

8.4 TierScape Tax
The tax includes telemetry data collection, post-processing,
and page migration overhead—including (de)compression
for compressed tiers. Pages decompressed due to on-demand
faults are excluded from TS-Daemon, as their cost is ac-
counted in the benchmark execution time.
ILP solver tax: Solving an ILP can be compute-intensive
depending on the problem and constraints. We use Mem-
cached with memtier to evaluate the performance impact of
AM-TCO, performing 1M read operations across all cores.
1. Only-profiling: TierScape uses perf to profile access pat-

terns without migration.
2. Local: Profiling + AM-TCO and AM-perf with the ILP

solver running locally.
3. Remote: Profiling + AM-TCO and AM-perf with the ILP

solver running remotely.
As shown in Figure 14, profiling introduces minimal over-

head. We observe negligible performance difference between
local and remote solver execution, as our ILP formulation
uses simple constraints—consuming less than 0.3% of a single
CPU (via perf ) and use ≈480MB of memory.

9 Discussions and future work
This paper proposes a paradigmatic shift toward building
server systemswithmultiple compressedmemory tiers. Through
experimental evidence, it demonstrates that such systems
can enable application- and service-specific memory TCO
savings and performance trade-offs. The core idea is that
memory tiers with distinct characteristics can be constructed
using different compression algorithms, pool allocators, and
backing media (e.g., DRAM, NVMM, CXL).

This proposal opens several research directions, including:
(i) selecting the optimal set of compressed tiers, (ii) choos-
ing tiers based on data compressibility, (iii) determining the

ideal number of tiers, (iv) evaluating the impact of differ-
ent compression algorithms, and (v) support for co-located
applications. Each of these directions warrants in-depth in-
vestigation and is noted as future work.

In this paper, we focus on the framework andmethodology
for harnessing multiple compressed tiers, demonstrating
benefits via intelligent page placement using both a basic
waterfall model and a more advanced analytical model.

10 Related Work
Several tiered memory systems have been proposed in recent
years [18, 19, 21, 26, 28, 29, 36–39, 41, 42, 48, 54, 55], along
with data placement and migration policies to optimize per-
formance and memory TCO. Most of the prior works are
based on a two-tier system, where the first tier consists of
low latency and costly DRAM memory while the second tier
consists of high latency but cheaper memory tiers backed by
NVMMs [3] or CXL-attached memory [25, 27, 43]. Recently,
memory tiering using a compressed memory tier has been
explored by a hyper-scale data center provider [38].

Hardware-based memory tiering with NVMMs [18, 26, 36,
54, 55] or CXL-attached memory [19, 21, 28, 41, 42] lacks
the flexibility in the software to define memory tiers with
distinct access latency, as access latency is determined by the
underlying storage media. Prior proposals employ different
telemetry techniques to identify hot and cold data [31, 34, 40,
44, 57]. HeMem [48] accumulates access information from
PEBS [34] into larger regions to reduce the overheads of
tracking pages at 4 KB granularity.

Prior work from Google [38] proposes tiering with DRAM
and a single compressed tier to improve memory TCO sav-
ings for cold data. It periodically scans the ACCESSED bit in
page tables to identify cold pages and migrates them to a
DRAM-backed compressed tier. An AI/ML-based prefetching
technique is used to proactively move pages back to DRAM.

11 Conclusion
We conclude with comprehensive experimental evidence
that systematic data placement by harnessing multiple com-
pressed tiers is an optimistic way forward to tame the mem-
ory TCO and performance trade-offs in modern data centers.
We also point out a few interesting research directions to
extract the full potential of multiple compressed memory
tiers.
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A Artifact Appendix
A.1 Abstract
The artifact evaluates the capabilities, models, and differ-
ent configurations of those models presented in the paper.
Although presented for Intel Optane, the artifact can be eval-
uated with any memory tier: HBM, CXL-attached memories,
etc., with appropriate changes in the config files.

A.2 Description & Requirements
A.2.1 How to access. The artifact is available at: https:
//github.com/IntelLabs/tierscape/ and https://zenodo.org/
records/17222213

A.2.2 Hardware dependencies. The system should con-
tain
1. Intel Optane memory tier
2. Root permission to install a patched Linux kernel

A.2.3 Software dependencies. To run the analytical model,
we need Google OR-Tools.

A.2.4 Benchmarks. The current version of artifact sup-
ports:
1. Masim: A microbenchmark to test the setup process
2. Memcahed: To reproduce the results in the paper.

A.3 Set-up
Please see https://github.com/IntelLabs/tierscape/#configuration
for a detailed guide in setting up the artifact. Change the
following variables as per your system:
vim <root_dir>/skd_daemon/skd_config.sh
# Change these============
FAST_NODE="0"
SLOW_NODE="1"
# path to perf binary as per the system
PERF_BIN="/usr/bin/perf"
# ====================

A.3.1 Running Tiering with Memcached – No Kernel
Patch. TierScape setup and Installation
cd <root dir of repo>

make setup # Sets up the environment and dependencies
# This will also run make python_setup automatically.

If this fails due to network issues (or
something else), please run the following after
fixing the issues.

make python_setup # Required for plotting

# Install memcached server
make install_memcached

# Install memtier_benchmark (if not already installed
)

make install_memtier_benchmark

Tiering with Memcached
make start_memcached # Starts memcached server
make load_memcached # Loads 40GB dataset with 4K

objects

# Baseline (no tiering)
make tier_memcached_memtier_baseline

# HeMem tiering strategy
make tier_memcached_memtier_hemem agg_mode=0 # 0

conservating 1 moderate 2 aggressive

# ILP-based tiering strategy
make tier_memcached_memtier_ilp agg_mode=0 # 0

conservating 1 moderate 2 aggressive

# Waterfall tiering strategy
make tier_memcached_memtier_waterfall agg_mode=0 # 0

conservating 1 moderate 2 aggressive

A.3.2 Linux kernel patching. Apply patches:
$ cd <root dir of repo>
$ git clone https://github.com/torvalds/linux.git --

branch v5.17 --depth 1
$ cd linux
$ git am ../linux_patch/0001-tierscape-eurosys26.

patch

$ git log

commit 8d955619e152eabd14acefa19c4c819c053cf96a (HEAD
-> tierscape)

Author: Sandeep Kumar <sandeep4.kumar@intel.com>
Date: Tue Sep 2 04:48:30 2025 +0530

tierscape eurosys26

commit f443e374ae131c168a065ea1748feac6b2e76613 (
grafted, tag: v5.17)

Author: Linus Torvalds <torvalds@linux-foundation.org
>

Date: Sun Mar 20 13:14:17 2022 -0700

Linux 5.17

Signed-off-by: Linus Torvalds <torvalds@linux-
foundation.org>

Build and install the kernel
$ cp tierscape_config .config
$ make -j $(nproc)
## Select default values for any new options
$ sudo make modules_install -j $(nproc)
$ sudo make install -j $(nproc)

$ sudo reboot

https://github.com/IntelLabs/tierscape/
https://github.com/IntelLabs/tierscape/
https://zenodo.org/records/17222213
https://zenodo.org/records/17222213
https://github.com/IntelLabs/tierscape/#configuration
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$ uname -r
5.17.0-ntier-noiaa-v1+

Enabling Compressible Tiers
$ cd <root dir of repo>
$ make ntier_setup
Using ZRAM
Removing zram
Setting up zram
FAST_NODE: 0
SLOW_NODE: 1
Disabling the prefetching
kernel.zswap_print_stat = 1
[ 3904.686103] zswap: Looking for a zpool zsmalloc

zstd 0
[ 3904.686104] zswap: It looks like we already have a

pool. zsmalloc zstd 0
[ 3904.686104] zswap: zswap: Adding zpool Type

zsmalloc Compressor zstd BS 0
[ 3904.686105] zswap: Total pools now 4
[ 3904.686117] zswap: Looking for a zpool zsmalloc

lzo 0
[ 3904.686118] zswap: using existing pool zsmalloc

lzo 0
[ 3904.686125] zswap: ..

Request for a new pool: pool and
compressor is zsmalloc lzo
backing store value is 0

[ 3904.686125] zswap: Looking for a zpool zsmalloc
lzo 0

[ 3904.686126] zswap: It looks like we already have a
pool. zsmalloc lzo 0

[ 3904.686126] zswap: zswap: Adding zpool Type
zsmalloc Compressor lzo BS 0

[ 3904.686126] zswap: Total pools now 4
[ 3904.686745]

------------
Total zswap pools 4

[ 3904.686747] zswap: Tier CData pool compressor
backing Pages isCPUComp Faults

[ 3904.686749] zswap: 0 0 zsmalloc lzo 0 0 true 0
[ 3904.686751] zswap: 1 0 zsmalloc zstd 0 0 true 0
[ 3904.686752] zswap: 2 0 zsmalloc zstd 1 0 true 0
[ 3904.686753] zswap: 3 0 zbud zstd 0 0 true 0

Executing Experiments with Kernel Patches: Rebuild Tier-
Scape with kernel patches enabled. Ensure the configuration
is done as in Configuration section.
$ cd <root dir of repo>
$ make setup ENABLE_NTIER=1
$ make tier_masim_ilp agg_mode=2

Run experiments with memcached as described earlier.
The results will be saved in the dir with suffix _EN1 indicating
kernel patches are enabled.

A.4 Evaluation workflow
A.4.1 Major Claims. Major claims made in the paper:

• (C1): Enabling multiple compressed tiers with different
configuration allows for an aggressive memory tiering
of warm pages. This is proved by Figure 7, Figure 8,
and Figure 9 of the paper.

• (C2): Analytical model allows for a configurable mem-
ory tiering at different cost-performance points. This
is proven by Figure 10 of the paper.

A.4.2 Experiments. Experiment (E1): [Waterfall + Analyt-
ical Model] [30 human-minutes + 1 compute-hour]: [How to
Run: Preparation and Execution]
Please see Section A.3 on instructions for how to run experi-
ments.

[Results] The results from the experiments are stored in-
side the evaluation directory which is in the root directory.
If you run either of the following commands:
make tier_memcached_memtier_all agg_mode=0 # 0

conservating 1 moderate 2 aggressive
# or
make tier_memcached_memtier_all agg_mode=0 # 0

conservating 1 moderate 2 aggressive

The experiments generate data comparing different tiering
strategies:
1. Baseline: No tiering, all data in single tier
2. HeMem [48]: HeMem-based tiering algorithm
3. ILP: Analytical model (Integer Linear Programming) -

based optimal tiering
4. Waterfall: Waterfall-based tiering strategy
The naming convention for directories inside the evaluation
directory will follow a structure:
perflog-ILP-F10000-HT.9-R0-PT2-W5-20250909-200453.
Breakdown of the dir name:
1. perflog: Prefix indicating performance logs
2. ILP: Tiering strategy used (Baseline, HeMem, ILP, Water-

fall)
3. F10000: PEBS frequency (10000)
4. HT.9: Hotness threshold (0.9)
5. R0: Remote mode (0 disabled 1 enabled)
6. PT2: Number of push threads to move data around
7. W5: Profile window in seconds
8. 20250909-200453: Timestamp of the experiment run
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