
SecureFS: A Secure File System for Intel SGX
Sandeep Kumar

IIT Delhi
India

sandeep.kumar@cse.iitd.ac.in

Smruti R. Sarangi
IIT Delhi
India

srsarangi@cse.iitd.ac.in

Abstract
A trusted execution environment or a TEE facilitates the
secure execution of a workload on a remote untrusted server.
In a TEE, the confidentiality, integrity, and freshness prop-
erties for the code and data hold throughout the execution.
In a TEE setting, specifically Intel SGX, even the operating
system (OS) is not trusted. This results in certain limitations
of a secure application’s functionality, such as no access to
the file system and network – as it requires OS support.
Prior works have focused on alleviating this problem by

allowing an application to access the file system securely.
However, we show that they are susceptible to replay at-
tacks, where replaying an old encrypted version of a file
may remain undetected. Furthermore, they do not consider
the impact of Intel SGX operations on the design of the file
system.
To this end, we present SecureFS, a secure, efficient, and

scalable file system for Intel SGX that ensures confidential-
ity, integrity, and freshness of the data stored in it. SecureFS
can work with unmodified binaries. SecureFS also consid-
ers the impact of Intel SGX to ensure optimal performance.
We implement a prototype of SecureFS on a real Intel SGX
machine. We incur a minimal overhead (≈ 1.8%) over the
current state-of-the-art techniques while adding freshness
to the list of security guarantees.

1 Introduction
In a typical cloud computing setting, it is necessary for users
to run jobs on remote machines that need not be trustwor-
thy [10, 14, 28]. Providing security in this setting is unfortu-
nately not possible to achieve with software-only solutions
[9, 21] because the remote OS cannot be trusted. Hence, it is
necessary to have architectural support to ensure that the
remote machine cannot steal secrets from the client’s pro-
gram or tamper with its execution. To support this paradigm,
different processor vendors have created hardware-based
trusted execution environments (TEEs) [4, 12], where it is
not possible to read the memory state of a secure program
even if the OS or hypervisor are compromised. Some popular
examples of such TEEs are Intel SGX [20] and ARM Trust-
zone [4]. They ensure three essential properties to different

Anonymous Submission to RAID, 2021
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

extents: confidentiality, integrity, and freshness. Confidential-
ity means that it is not possible for a rogue program on the
remote machine to read data without proper authorization,
integrity does not allow undetected malicious tampering of
the program’s state running on the TEE, and freshnessmeans
that stale data (valid in the past) is not returned by read
operations.

Even though such TEEs have solved most of the problems
with secure remote execution as far as the compute part
of the program is concerned, we are still dependent on the
OS for some key services, notably file system accesses [5, 8,
10, 14, 33]. Applications require access to the file system to
read the data, save results, saving partial state, etc. Hence,
it is necessary to also provide a secure file system to such
remotely executing programs.

Prior works have proposed solutions for creating a secure
file system that is immune to most of the known attacks on
file systems. However, they have ignored an important type
of attack known as the replay attack (freshness property).
In this case, a malicious adversary can replace the current
copy of some blocks of files with an older copy and remain
undetected. Such replay attacks tamper with the integrity
of the execution unbeknownst to the TEE; they have also
been shown to be potent enough to change the execution of
a secure program such that it reveals its sensitive secrets [7,
29]. We were able to successfully mount a replay attack on
two state-of-the-art file systems: Graphene (protected file
mode) [10] and Nexus [14]. This motivated us to design a
file system called SecureFS that additionally provides the
property of freshness, while simultaneously minimizing the
performance overhead.

We first analyzed different applications that have frequently
been used in papers [16, 22, 35, 40] in this area. Furthermore,
we used the insights obtained to refine SecureFS’s design.
The key idea is that we need to modify the design of file
system structures to efficiently store the metadata such that
we can easily provide the three security guarantees: confi-
dentiality, integrity, and freshness. Moreover, we found that
it was not possible to trivially extend prior proposals to ad-
ditionally guarantee freshness; it was necessary to design a
bespoke file system such that freshness can be guaranteed
with negligible overheads. We propose both a FAT table-
based and an inode-based design, and thoroughly evaluate
their performance in a TEE setting.

The list of contributions is as follows.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Anonymous Submission to RAID, 2021 Sandeep Kumar and Smruti R. Sarangi

1. We show that the current state-of-the-art secure file
systems are susceptible to replay attacks by mounting
successful attacks on them.

2. We thoroughly characterize workloads that are used
in Intel SGX related literature, in terms of their file-
access behavior. Based on the results, we derive a set
of insights.

3. We study the impact of Intel SGX constructs on the
performance of different file system designs.

4. We propose a novel design of a file system to ensure
all three security guarantees while at the same time
incurring a minimal slowdown (≈ 1.8%).

The rest of the paper is organized as follows. We start by
providing the necessary background in Section 2. We discuss
the related work and how we mounted replay attacks in Sec-
tion 3. Subsequently, we characterize relevant workloads in
Section 4 and obtain insights regarding their behavior. Using
the insights obtained we present the design and implementa-
tion of SecureFS in Section 5. We evaluate the performance
of SecureFS in Section 6, and finally, conclude in Section 7.

2 Background
In this section, we cover the background required for the
rest of the paper.

2.1 A Primer on Intel SGX
Intel Secure Guard eXtensions (SGX) [20] is a trusted exe-
cution environment, or TEE, solution from Intel. It allows
an application to execute securely on a remote machine. At
boot time, a part of the system memory is reserved for SGX,
called PRM or processor reserved memory. A part of the PRM
is used to store SGX metadata, and the rest of it is used
for user mode applications. The latter is called the EPC or
enclave page cache. To execute an application within SGX,
the application is allocated pages from the EPC along with
other bookkeeping structures, collectively known as an en-
clave [12, 18, 19]. While executing an enclave, the CPU is
said to be in a secure mode. In this mode, the traffic between
the last level cache (LLC) and main memory is transparently
encrypted by a dedicated hardware unit called the Memory
Encryption Engine, or MEE [12]. The MEE is also responsible
for maintaining the data’s integrity and freshness.

Although Intel SGX ensures secure execution, it does not
provide protections against side-channel attacks [7, 16, 25,
29]. In general, all schemes that are based on SGX also share
its vulnerabilities.

2.1.1 Challengeswith SystemCalls. Amajor limitation
of SGX is that it does not allow system calls from an enclave
due to security concerns. As a result, to make a system call,
the application (running within the enclave) needs to exit
the secure mode, make the system call, collect the results and
return to the secure mode. Specifically, to enter the secure

mode, applications need to call an ECALL function and to exit
the secure mode, they need to call an OCALL function.

2.1.2 Enclave Entries and Exits . During execution, an
enclave may have to switch from the secure to the unsecure
mode many times due to context switches, exceptions within
the secure code, or a call to an ECALL or OCALL function.
While transitioning from the secure to the unsecure mode, it
is necessary to flush the TLB entries that contain mappings
for the secure pages . This is done to prevent data leaks from
the caches [12].
When the enclave switches back to the secure mode, it

starts with a cold TLB and encounters many TLB misses,
resulting in many page table walks. While adding entries
in the TLB, if the entry points to a page in the EPC then
it is validated by SGX. For this purpose, SGX maintains an
inverted page table in the EPC called the Enclave Page Cache
Map or EPCM. It contains details about every EPC page’s
state, its owner, and the corresponding virtual address for
which it was allocated. SGX ensures that the TLB entry is
inserted only for the process that spawned the enclave, and
contains the same virtual address for which it was initially
allocated.

Finally, during an enclave exit, the context of the executing
enclave is saved in the secure region along with the register
values. These functions have overheads of roughly about
14,000 cycles (measured by Weisse et al. [37]).

2.1.3 Eviction from EPC. The size of the EPC is typically
92MB in current SGX implementations [19]. However, Intel
SGX allows an enclave to allocate more memory. It trans-
parently handles the eviction of pages from the EPC to the
untrusted memory. If an enclave’s working set is much larger
than the size of the EPC, it will trigger frequent page-faults
(as the pages have to brought in from the untrusted region
to the EPC). A single page-fault takes approximately 64,000
cycles, as measured by Liu et al. [23]. Note that security is
not compromised in this process.
All of these factors collectively increase the overhead of

making a system call in the secure mode. Hence, it is a wise
design choice to limit the transitions from and to secure
mode, and limit the amount of trusted memory used.

2.2 Metadata organization of a File System
Here, we discuss some of the metadata organizations for a
file system.

2.2.1 FAT table-based organization. In this organiza-
tion, the metadata is organized in a single table called the
FAT table – a large array. Here, if a file consists of multiple
blocks, then the multiple entries are stored as a linked list
within the table, as shown in Figure 1. Each entry in the FAT
table has two pointers: one pointer to a block in the disk
corresponding to the entry, and the other points to the FAT
table entry corresponding to the next block in the file.

2

SecureFS: A Secure File System for Intel SGX Anonymous Submission to RAID, 2021

FAT
Pointer

Data
pointer

FAT_EOC

Figure 1. Design of a FAT table-based metadata organiza-
tion.

2.2.2 Inode-based organization. In this organization, we
have an inode for every file in the file system. An inode is
organized in a tree-like structure (see Figure 2). Here, the
first few data blocks of a file are directly pointed to. As we
increase the size of the file, the subsequent blocks are pointed
to using indirect blocks. The level of indirection can be sin-
gle, double, or even triple, depending upon the size of the
file and the amount of metadata entries a single level can
hold.

DirectIndirect
2

Indirect
1

A

B

C

D

Indirect
3

C
a
sc

a
d
e
d
 u

p
d
a
te

s

Data
blocks

Metadata
blocks

Inode

Level 0

Level 2

Level 3

Level 1

Figure 2. Design of an inode-based metadata organization.

Cascaded Operations: In the case of a secure file system,
typically, the key of a block is stored in its parent [14]. The
key is changed for every block update to ensure its freshness.
As shown in Figure 2, an update to the data block𝐴, which is
at the leaf-level, will encrypt it with a new key. The key will
be stored in 𝐴’s parent, i.e., in metadata block 𝐵, essentially
modifying 𝐵. This triggers an update operation till the root,
which is in the inode– cascading of write operations. Note
that this is required only when writing the blocks to the
untrusted region. An update in metadata block 𝐶 , can be
cached till 𝐶 is flushed to the untrusted region. A similar
situation happens while reading the blocks. Again, reading
block 𝐴 requires access to block 𝐵 since it contains the key

required to decrypt block 𝐴. This dependency is present till
the root level – cascading of read operations.

This issue has been pointed out by the authors of Nexus [14].
However, they do not take any steps to mitigate this. We
show (Section 6) that cascading is expensive, and further
exacerbated in an SGX setting.

2.3 Attacks on File Systems
The most popular attacks on secure file systems are as fol-
lows:
File System Snooping attack A malicious OS keeps track
of all the calls made by the application to the file system,
along with its arguments [11, 14, 30, 33]. This gives a clear
picture of what the application is doing; this may further
allow the OS to access the data that the application is reading
or writing.
Replay attacks In this case the malicious OS replaces a file
and its hash (used to maintain integrity) by a previously
seen ⟨𝑓 𝑖𝑙𝑒, ℎ𝑎𝑠ℎ⟩ pair. Secure file systems that rely on simply
verifying the hash are susceptible to this kind of attack [10,
14].
Page fault attacks Here, a malicious OS exploits its control
of the application’s page table. The OS invalidates all the
mappings in the TLBs and page tables, which results in a
page fault when the application tries to access a page. This
provides the OS with a sequence of pages accessed by the
application. This has been shown [7, 39] to leak some amount
of secret information.

In this paper, we address the first two attacks. Tackling a
page fault attack requires a change (in the OS and hardware)
in how the page tables are managed by Intel SGX. This is
beyond the scope of the paper.

3 Related Work and Replay attacks
A secure file system uses the untrusted host file system to
store files in an encrypted format [10, 14]. To mount a re-
play attack, an attacker copies the encrypted blocks of a file,
say 𝐹 , to a different location on the system. The secure file
system continues updating 𝐹 , changing its state to 𝐹 . Now,
the attacker replaces the encrypted blocks of 𝐹 with that
of 𝐹 . If this remains undetected, i.e., the file system accepts
the copied blocks as the latest blocks of the file, then the
replay attack succeeds. We show that the current state-of-
the-art secure file systems – Graphene protected files [10]
and Nexus [14] – are susceptible to this attack.

3.1 Graphene Protected Files
Graphene [10] is a shim layer that can run unmodified bi-
naries securely within an SGX enclave. This feature saves
developers many hours of effort in porting their code to
Intel SGX. As already mentioned, within an SGX enclave,
an application cannot make system calls. Graphene solves
this problem by providing system call support as a library

3

Anonymous Submission to RAID, 2021 Sandeep Kumar and Smruti R. Sarangi

service. This feature also allows transparent access to the
file system on the host OS.
Graphene has a protected files mode – henceforth called

GraphenePF– that protects the confidentiality and integrity
of a file while reading or writing to it. All the protected files
are encrypted using a single key that remains fixed [27]. The
encrypted file contains the hash of the data and its path.
Incorporating the path in the hash prevents it from a file-
swapping attack.

3.1.1 Attack: Since all the protected files are encrypted
using a single key, we were able to replace an encrypted file
with an old encrypted version of the same file, and success-
fully mount a replay attack on it. GraphenePF has no way of
telling whether the current file is the latest or not, as both
the conditions that will trigger an error, integrity failure or
path check failure, still hold.

3.2 Nexus
Nexus [14] is a secure file system for Intel SGX that guaran-
tees confidentiality and integrity of the files stored in it. Its
design is predominantly targeted towards ease of sharing se-
cure volumes among different trusted users, with an efficient
access revocation mechanism [14]. Nexus has a much more
complex organization of files as compared to GraphenePF.
Nevertheless, it is also susceptible to a replay attack. As noted
by the authors of Nexus, the design of Nexus is susceptible to
a forking attack, where the updates from one client to the file
system are kept hidden from another client – this definition
is subsumed within our definition of a replay attack.

1 22

Data

Metadata

Only Key
dependency

Metadata

Data

Volume key

F
Time

Key & Hash
dependency

F'

3

Figure 3. Mounting a replay attack in Nexus [14].

Nexus, prior to storing a file on the disk, splits the file into
fixed-size blocks. It then encrypts each block with a different
key, and stores the key within the metadata of that file. The
key is changed every time the corresponding block is written
to. The data blocks are also integrity checked. In this setting,
as there is a (key & hash)-dependency, it is not possible to
replay old encrypted data blocks as they will be decrypted
with a different key.

However, while unmounting the volume, Nexus encrypts
the metadata structure of all the files with a single key, called
the volume key (see Figure 3). This is obtained from the
user via remote attestation [12]. Even though the integrity
of the metadata is preserved, the use of a single key (only
key-dependency) allows an attacker to replay the old ⟨data,
metadata⟩ pair, which is accepted as a valid (and latest) file
by Nexus during the next mount.

3.2.1 Attack: As shown in Figure 3, to mount a replay
attack, ❶ we mounted the Nexus file system [13] and created
a new file (𝐹). As per the design of Nexus, this file is created
in a memory mapped region and is flushed to disk (in an
encrypted format) at the time of unmounting. Then, we
unmount the file system and copy the encrypted blocks of 𝐹
to a different location. The encrypted blocks can be easily
identified as theywere the newest blocks (even thoughNexus
obfuscates the file name with an 8-byte unique id called
UUID).❷We thenmount the file system again, modify the file
(making it 𝐹 ′) and unmount the volume. ❸ After the second
unmount, we replace the encrypted data andmetadata blocks
of 𝐹 ′ with that of 𝐹 (saved in the first step). In the subsequent
mount, Nexus recognized the replayed blocks of the file 𝐹 as
the latest blocks.

4 Characterization
In this section, we start out by choosing a set of workloads
that have been used in prior work that uses Intel SGX as
the baseline platform [16, 22, 35, 40], along with a few more
workloads that are similar in nature [2, 3, 6, 31]. The work-
loads are summarized in Table 1.

4.1 Experimental Setup
We used the strace tool [38] to profile the file system calls
made by an application. The trace generated by strace con-
tains the file system function calls, their arguments, and the
return values. This gives a clear picture of the interaction of
the application with the file system.

All the applications were executed on a machine with an
Intel Core i7-10700 CPU (16 cores) running at a frequency
of 2.90 GHz, 16 GB of DRAM, and 256GB of SSD (details in
Table 2).

4.2 Access patterns
The access pattern of an application tells whether it accesses
(read or write) data sequentially or randomly. To determine
this, we track twometrics: stride, the length of a read or write
access, and Delta Δ, the movement due to a seek call. A read
(or write) call reading (or writing) 1000 bytes has a stride of
1000. A seek (say 𝑖𝑡ℎ) moving the file pointer by 100 bytes
has a Δ𝑖 of 100 . Total movement is defined as Δ̄ =

∑𝑁
𝑖=0 |Δ𝑖 |,

here, 𝑁 , is the total number of seek calls.
Sequential access patterns have Δ̄ = 0. This is mainly

due to 𝑁 = 0, i.e. no seek calls. Whereas random-access
4

SecureFS: A Secure File System for Intel SGX Anonymous Submission to RAID, 2021

0 2000 4000 6000 8000 10000 12000

Time in ms

0

50

100

150

200

250

300

D
e
lt

a
(

)

Read WriteComputeCompute

Overlaps

(a) Sequential access pattern for SVM, show-
ing read, compute, and write phases.

Different
files

(b) Random access pattern for License3j (only
the license check phase).

(c) Throughput of each workload

Fil
e s

ys
te

m
ca

lls

2500 5000 7500 10000 12500
Time in ms

OPEN
CLOSE
LSEEK
READ

UNLINK
WRITE

(d) Distribution of calls for SVM

Fil
e s

ys
tem

 ca
lls

100 200 300 400
Time in ms

OPEN
CLOSE
LSEEK
WRITE
READ

UNLINK

(e) Distribution of calls for License3j (only
the license check phase).

(f) Total file system related calls.

Figure 4. Characterization of workload in terms of their access patterns, file system calls, amount of data accessed, and total
files accessed.

Benchmark Description & Setting Data ac-
cessed

SVM [17] Classification of data using the support
vector machine (machine learning).
Classifies 100,000 samples.

50MB

LibCatena [24] Generating blocks in a blockchain.
Reads the genesis block and adds blocks to
the chain.

0.005MB

OpenSSL [26] Cryptographic algorithms library
Reads a file, decrypts it, verifies it, processes
it, and saves the result in an encrypted file.

150MB

License3j [34] License verification
Check a license file before executing a
compute-intensive task.

4MB

BTree [2] BTree Look-ups (used in databases)
Table with 2M elements with 1M lookups.

128MB

HashJoin [3] Hash table probing
Table with 1M elements

122MB

BFS [32] Graph traversal
Processes a symmetric graph with 1M nodes
and 10M edges.

135MB

Pagerank [32] Ranking of nodes in a graph
Processes a symmetric graph with 1M nodes
and 10M edges.

135MB

Table 1. Description of the workloads used in the paper.

patterns have different values of Δ𝑖 . In most (7 out of 8) of
the workloads, the access pattern is sequential. We show a
representative plot of the values of Δ𝑖 across time in Fig-
ure 4a for the SVM workload. It remains equal to 0. Each
data point represents a sample (many are not visible because
they overlap). However, we saw a lot of random access for
the license manager in Figure 4b (different values of Δ).

4.3 Distribution of File Access Calls over Time
Let us now understand the pattern of file system calls made
by the applications. Figures 4d and Figures 4e show violin
plots for the relative proportion of system calls in SVM and
License3j, respectively (SVM is representative of 7/8 work-
loads, and License3j is an outlier). The top half of each plot
shows the pdf (and its mirror image) for the distribution of
file system calls over time. The bottom half shows a box plot
(0, 12.5, 25, 50, 75, 87.5, 100 percentiles) of how file system-
related system calls are invoked over time (normalized only
with respect to themselves).

Figure 4d tells us that, for SVM, almost all the open calls
happen in the first 1250 ms. Reads happen till 2500 ms at
which all the data is loaded in the memory. The writes hap-
pen later (towards the end) to save the results. For License3j,

5

Anonymous Submission to RAID, 2021 Sandeep Kumar and Smruti R. Sarangi

as shown in Figure 4e, during the license check phase, the
application opens different files and reads them in a random
manner.

4.4 Throughput
We observe that the throughput ranges from roughly 1 KB/s
to 100,000 KB/s (Figure 4c). To do the same in a secure file
system, we need to finish all the computations, memory
accesses, and system calls within that time. One more notice-
able trend in this figure is that sometimes reads outnumber
writes (except for BTree and HashJoin), as shown in Fig-
ure 4f. Thus, we need to optimize our file system for reads;
moreover, reads are often on the critical path.

4.5 Key Insights
Based on the characterization, we arrive at few key insights.
The design of our secure file system is based on this. The
insights are as follows (figures for insights 3, 4, and 5 were
not added due to a lack of space):

1. Applications access data in a sequential manner.
2. Most of the accesses are read operations and the

writes are generally done at the end to save the
results of the execution.

3. The file system hierarchy has 2-6 levels. (moder-
ately deep).

4. The total number of files accessed by an application
can go up to 1000.

5. At a given time, an application has a maximum of
10 open files.

5 Design and Implementation
In this section, we discuss the design and implementation of
SecureFS.

5.1 Design Goals
• Ensure confidentiality, integrity, and freshness of the
data present in the file system.

• Use the insights from workload characterization to
optimize the performance of SecureFS.

5.2 Threat Model
We assume the traditional threat model used by Intel SGX.
The attacker has access to the physical machine and the code
of the application and the file system. Anymodification to the
application’s or file system’s code will be detected by Intel
SGX. We do not consider side-channel attacks and denial-
of-service attacks, as they do not fall under the purview of
Intel SGX [12].

5.3 Overview of the Design
A high-level design of SecureFS is shown in Figure 5. The file
system related calls from a secure application are captured
by SecureFS and processed within the SGX environment.

SecureFS can be configured in twomodes:❶We can either
have a per-process SecureFS volume, ❷ or a shared volume
among multiple secure processes. In the former case, each
secure application is linked with a shim layer that captures
the file system related calls and processes it within the SGX
environment. In the latter case, SecureFS is executing as a
secure process in Intel SGX. Every other secure application is
linked with a shim layer that captures the file system related
calls from the application and forwards them to the SecureFS
processes via a shared memory channel. The SecureFS pro-
cess processes the request and sends the result back via the
same channel. This design allows us to provide concurrency
because a single SecureFS process is responsible for handling
all the requests and maintaining the consistencies of the data
structures. Given that they are designed in a similar man-
ner, for the rest of the discussion we assume a per-process
SecureFS volume.

5.4 Organization
We split a SecureFS volume into 4KB blocks – henceforth
called chunks (Figure 5). We also reserve 256 bits within a
chunk to store its hash (0.78% of 4 KB). Notwithstanding
internal fragmentation issues, this design choice helps us
simplify our design. All the operations in SecureFS happen
at the chunk level. Like Nexus [14], we use per-chunk keys
to ensure the confidentiality of chunks. The key of a chunk
is stored in the corresponding metadata entry. A metadata
entry of a chunk contains the unique ID of the chunk (dis-
cussed next, Section 5.5), a 128-bit key for the chunk, and a
modified bit. This can be augmented to store additional data
based on the metadata organization used (e.g. a next pointer
in the case of a FAT Table-based organization).
The design of SecureFS is independent of the metadata

organization. As per the requirements, a FAT Table-based or
an inode-based organization can be used. The basic abstrac-
tion is that the metadata should have a one-to-one mapping
with the data chunks, i.e. the metadata contains one entry
per data chunk in the SecureFS volume, and vice versa.

5.5 Storage on the Host File System
To store a chunk on the untrusted host file system, we first
fetch its metadata entry (details in Section 5.9.2). A chunk
is only written to disk if the modified bit is set (Insight 2).
Prior to writing, we calculate the hash of the chunk using the
SHA-256 algorithm, and store it in the reserved bits within
the chunk. After hashing, the chunk is encrypted using the
AES-128 algorithm [15] (cipher block chaining (CBC) mode).
The key required for the encryption is randomly generated
and is stored in the corresponding metadata entry.

6

SecureFS: A Secure File System for Intel SGX Anonymous Submission to RAID, 2021

We assume that in the host OS’s file system we have a
single directory that contains all the encrypted chunks (each
stored as a 4 KB file). To anonymize the accesses we have
hidden the directory structure. Each chunk is simply assigned
a 8-byte unique id – hereinafter referred to as the UID. The
next time when the same chunk is written back, we change
its UID by generating a new 8-byte random number. Every
time we write back a chunk we generate a new UID, and
thus create a new file. The old file needs to be deleted – this
need not be done immediately and can be done at a later
point of time (to confuse the adversary).

To read a chunk, we get its metadata entry. We use the UID
to read the content of the file from the untrusted host-OS.
Using the key in the metadata entry, we decrypt the chunk
and calculate its hash (ignoring the last 256 bits). We then
match the calculated hash with the hash stored in the last 256
bits. If it matches, the read is successful otherwise an error
is thrown, the volume is made read-only, and unmounted.

Chunk READ/WRITE

Secure Process

Slab Table Metadata cache

Directory Table Metadata entryOpen Files List

Slabs

Chunk cache

Chunks

1

3 4

Data Hash
Encrypted chunks/slabs

A single encrypted chunk/slab

Enclave
boundary

File system calls
are intercepted

UID Key Mod.
Bit

Ptr.

Figure 5. Overview of SecureFS showing the key data struc-
tures, enclave boundary, chunk organization, and metadata
entries.

5.6 Key Structures of SecureFS
5.6.1 Chunk Cache and Metadata Cache. For a 1-GB
file system, the amount of metadata required is ≈ 9MB (9.7%
of the EPC) for a FAT Table-based organization (see Sec-
tion 5.8). It is not desirable to pin this in the trusted memory,
since this might affect the performance of other secure appli-
cations. Also, reading or writing a chunk for every read or
write operation from the untrusted medium is an expensive
operation as it involves hashing and encryption.

To ensure optimal performance, wemaintain a small cache
of decrypted slabs and chunks – metadata cache (M) and
chunk cache (C), respectively – in the trusted memory and
dynamically manage it. We keep the size of these caches
small to ensure minimal pressure on the EPC and reduce
the expensive EPC page faults [23]. All the data and the
metadata accesses happen from C orM, respectively. For the
rest of the discussion, we assume a 2MB chunk cache and a

100 KB metadata cache. We present a sensitivity analysis in
Section 6.6 to justify these values.

5.6.2 Slabs and Slab Table. As noted earlier, we divide
the data region into 4 KB chunks. Similarly, to ease the main-
tainability of the metadata, we propose to divide the meta-
data region into a set of contiguous regions known as slabs.
A slab is an analog of a chunk; we use different naming con-
ventions to differentiate between data and metadata. A slab
is written and read from the disk using the same mechanism
as defined for the chunks in Section 5.5 (the hash is stored
in the last 256 bits).

Consequently, we need a structure to hold the keys of the
slabs in the trusted region – when a slab is flushed to the
disk (similar to the keys of a chunk). For this purpose, we
introduce a novel structure called the slab table that contains
one slab entry for each slab. Each slab entry contains a slab
UID, a 128-bit key, a pointer to the metadata cache (M), and
a modified bit. In our implementation, the size of the slab
table is ≈ 56 KB. We pin the slab table in the trusted memory,
thus, providing a root-of-trust for the metadata entries. A
slab table prevents replay attacks on the file system (details
in Section 5.10).

5.6.3 Directory table. We maintain the directory table as
a flat-hierarchy (Insight 3), in an array, since the total number
of files accessed by a secure program is small (Insight 4). The
directory table contains absolute path names mapped to their
metadata entries. The directory table is pinned in the trusted
memory (size is few KBs).

5.6.4 Open File List. We maintain a small list of the 100
most recently used file paths (Insight 5), and their correspond-
ing metadata pointers (current location of the file pointer
within the file). This is also pinned in the trusted memory.

5.7 Metadata Organization
The organization of metadata plays an important role in
determining the performance, especially in the Intel SGX
setting because of the high cost of enclave transitions and
EPC faults [12, 23]. However, to the best of our knowledge,
it has received no attention in the literature [8, 10, 14, 33].

We implement SecureFS using two different metadata or-
ganizations: a FAT Table-based and an inode-based organi-
zation. They are called SecureFS-FAT and SecureFS-inode,
respectively, in the rest of the paper. We present a detailed
performance comparison of the two organizations in Sec-
tion 6.2. We discuss the working of SecureFS using a FAT
Table-based organization. We point out some differences for
an inode-based organization in Section 5.12.

5.8 SecureFS-FAT
As mentioned before, for each chunk we have a metadata
entry – a FAT table entry in this case. Theoretically, if the
size of the file system is 𝐾 KB, then we have 𝐾/4 FAT table

7

Anonymous Submission to RAID, 2021 Sandeep Kumar and Smruti R. Sarangi

entries arranged as a linear array. This makes lookup of a FAT
entry for a chunk easy. The entry for chunk 𝑖 is the location
at the 𝑖𝑡ℎ index of the FAT table. This design allows for easy
metadata lookups for sequential operations (Insight 1).
Each entry of a FAT table entry contains three pointers:

UID of the chunk it is pointing to, a 128-bit chunk key, one
pointer to the chunk cache, and a pointer to the FAT table
entry of the next chunk in the file. If the size of our file
system is 1GB, then we shall have 256K chunks, and will
require the same number of FAT table entries. The size of
the FAT table in our implementation is ≈ 9MB.

5.8.1 Mounting a Volume. To mount a volume, we fetch
the volume key and the hash of the slab table from a trusted
third party via remote attestation. The key is used to de-
crypt the superblock stored on the host file system. The total
number of chunks required for a super block is stored in
the first chunk. The superblock contains the slab table and
the key and hash for the directory-table. We calculate the
hash of the slab table and ensures that it matches with the
value provided by the trusted third party. This ensures that a
volume replay attack, where an attacker instead of replaying
chunks of a file replays the old state of an entire volume,
cannot be mounted. We use the directory key to populate the
directory table (after verifying the hash). We start with an
empty metadata cache (M) and chunk cache (C), and manage
them dynamically based on the file system operations.

5.9 File System Operations
We discuss the following file system operations, open, read,
write, and close, using a running example, as shown in Fig-
ure 6.

NULL

Directory Table hash

{
{

Slab Table

Directory Table key

Slab Table

Metadata cache Chunk cache

Slab 0, key0

Slab 1, key1

Slab 2, key2

Slab M, keyM

End of the
file

2

3 4

Volume
Key and

Slab Table
hash

321

Open Files List

/dir/car.jpg

/dir/car.jpg

Directory Table

Figure 6. Steps in opening and reading a file /dir/car.jpg in
SecureFS-FAT.

5.9.1 Opening a File. To open a filewith a given name, we
linearly scan the directory table to get its first FAT table index.
As the total number of files in a volume is small (Insight 4), a
linear scan is not expensive, and is only done while opening
a file. If the file is not present (and the O_CREAT flag is set),

we create a new entry in the directory table, and assign an
empty FAT table index as its first entry. We then add an entry
into the open files list: ⟨absolute file path, FAT table index⟩
(step ❶). The open file lists tracks the location of the file
pointer within the file.

5.9.2 Reading a File. To access a file, assuming that the
file is already open, we fetch the current location of the file
pointer (the FAT table index) from the open files list. We
use this index to calculate the slab id (step ❷). If the FAT
table index is 321, and each slab contains 120 slab entries,
then the slab id will be ⌊321/120⌋ = 2, and the offset will
be 321𝑚𝑜𝑑 120 = 81, i.e. the 81𝑡ℎ entry of the 3𝑟𝑑 slab (slab
index starts from 0).
We fetch the corresponding slab entry and analyze the

metadata cache pointer. If the pointer is not NULL (metadata-
hit), we read the corresponding metadata entry (step ❸),
else if the pointer is NULL (metadata-miss), we fetch the slab
(using the UID) and then read the metadata entry.

The metadata entry points to the next chunk of the file.
We fetch the metadata entry of the next chunk (might be in
a different slab) and then check its chunk cache pointer. If
the pointer is not NULL(chunk cache-hit), we read the chunk
(step ❹). If the pointer is NULL (chunk cache-miss), we read
the chunk into the chunk cache.

Note that reading a chunk into either of the caches might
require an eviction. We write the contents of a chunk (or a
slab) being evicted using the steps described in Section 5.5. If
the chunk (or slab) was modified, then a new key is generated
and is stored in the corresponding metadata entry (or slab
entry), with the pointer to the cache updated to NULL.

5.9.3 Writing a File. For writing, we ensure that the re-
quired chunk is in the chunk cache using the same method as
for a read. Once we have the chunk cache index, we update
the chunk with the required data, and set the modified bit in
the metadata entry.

5.9.4 Closing a File. While closing a file, we write back
all the modified chunks (encrypted) to the SecureFS volume
and update all the FAT table entries.

5.9.5 Unmounting a Volume. While unmounting a vol-
ume, we close all the open files, writeback all the data and
metadata, and update all the slab entries. We then calculate
the hash of the slab table and send it to the trusted third party.
If the hash is successfully sent, then we update the hash of
the directory table in the superblock, and write encrypted
chunks of the superblock to the disk (using the volume key).
Optionally, we can also change the volume key, and send it
to the remote third party along with the hash.

5.10 Preventing Replay Attacks
The slab table enforces a (key and hash)-dependency be-
tween the metadata and the superblock of the file system
(not present in Nexus). An attacker can either replay the

8

SecureFS: A Secure File System for Intel SGX Anonymous Submission to RAID, 2021

entire volume, a superblock chunk, a slab, or a chunk. The
key+hash from the trusted third party prevents replaying a
superblock chunk or the entire volume. Replaying a slab or a
chunk will also cause integrity checks to fail as they will be
decrypted using a key that is not the same as the one used to
encrypt it. An attacker can try to replay a pair: ⟨a slab and
a chunk ⟩ (the metadata entry of the chunk is in the slab).
This will cause an integrity check failure while reading the
slab as it will be decrypted with a key stored in the slab table.
Given that the key changes every time, the integrity check
will fail.

5.11 Concurrency and Consistency
As already mentioned, upon detecting an attack, SecureFS
makes the volume read-only and unmounts it. At the next
mount, it might be possible that the offending chunk is read
again, triggering another unmount. This will continue till
the attacker replaces the offending block with the original
one.

A tricky scenario is as follows: the host OS decides to ma-
liciously stop the machine at an arbitrary point in time. The
next time we mount the volume, we will read the slab table
and use it to verify the slabs. Note that if the volume was not
closed, some of the slab entries might not be synchronized
with the slab table entries. In this case, if we wish to partially
recover, we can verify the hashes of the slabs, and then delete
all those metadata entries whose slab hashes do not match.

5.12 SecureFS-inode
For an inode-based metadata organization, each file has a
corresponding inode that points to a data chunk, either di-
rectly or indirectly. Here, the directory table for each file
points to an inode. The inodes are kept in the trusted mem-
ory due to the small number of total files (Insight 4). The
open files list maps a file to an inode and contains the file
pointer (chunk id and offset within the chunk). The meta-
data entry corresponding to a chunk may require access to
different slabs based on the depth at which the data chunk
is located (cascade operations). The algorithm to read slabs
and chunks remains the same as that of SecureFS-FAT.

6 Evaluation
In this section, we evaluate the performance of SecureFS in
two settings: ❶ with a FAT Table-based metadata structure
and ❷ with an inode-based metadata structure (implemented
on top of state-of-the-art platforms). Table 2 shows the set-
ting of the test-bed used for the evaluation and Table 3 lists
the notations used in the rest of the paper for discussion.
We report the mean values of 10 runs (seen to be enough),
unless otherwise stated.

Hardware Setting
Model: Intel Core i7-10700 CPU, 2.90 GHz DRAM: 16GB Disk: 256GB (SSD)
CPUs: 1 Socket, 8 Cores, 2 HT L1: 256 KB, L2: 2MB, L3: 16MB
AES hardware support: YES SHA hardware support: NO

System Settings
Linux kernel: 5.9 DVFS: fixed frequency (performance) ASLR: Off
Python version: 3.6 Java version: 1.8 GCC: 9.3.0

SGX Settings
PRM: 128MB Driver version: 2.11 SDK version: 2.13

Table 2. System configuration

Notations
Application + file system data is protected

G-PF Graphene with the protected files feature ON.
G-SF-F Graphene with SecureFS-FAT.
G-SF-I Graphene with SecureFS-inode.

Only file system data is protected
Nexus Current state of the art providing only encryption and integrity.
SF-F SecureFS-FAT
SF-I SecureFS-inode

Table 3. Notations used in the paper for discussion

6.1 Evaluation strategy
• SecureFS-FAT vs SecureFS-inode: We evaluate the
performance of the two metadata organizations and
point out certain limitations of the inode-based struc-
ture.

• I/O-intensive workloads: We compare the perfor-
mance of SecureFS with GraphenePF for the popular
file system benchmark Iozone.

• ComparisonwithGraphenePF andNexus:We eval-
uate the performance of SecureFS with GraphenePF
and Nexus using a set of synthetic and real world work-
loads (Table 1).

• Sensitivity analysis: We perform a sensitivity anal-
ysis of SecureFS for different chunk sizes and cache
sizes.

The overhead of SecureFS is expected to be positive be-
cause we are providing more security guarantees. However,
due to our optimizations, it is negligible (≈ 1.8%).

6.2 SecureFS-FAT vs SecureFS-inode
Here, we compare the performance of SecureFS-FAT (SF-F)
and SecureFS-inode (SF-I). As already noted, an inode-based
implementation suffers from cascaded updates due to a tree-
based organization. Figure 7 shows the latency of read and
write operations. The latency of the read operations remains
the same in both the cases (Figure 7a), as we do not update the
keys if there are no modifications to a data chunk. However,
for the write operations, the latency for SecureFS-inode is
significantly higher (2×). This is due to the cascaded updates.

6.2.1 Discussion: Since the size of the chunk cache (2MB)
is significantly smaller than the amount of data being written
(1GB), it causes many chunk cache evictions – resulting

9

Anonymous Submission to RAID, 2021 Sandeep Kumar and Smruti R. Sarangi

12 14 16 18
Latency of read() in ms

0%
20%
40%
60%
80%

100%

CD
F

SF-F SF-I

(a) Read operations

15 20 25 30
Latency of write() in ms

0%
20%
40%
60%
80%

100%

CD
F

SF-F SF-I

(b)Write operations

Figure 7. CDF [1] of read and write latencies for Iozone:
sequentially reading and writing 1GB of data.

Setting Metadata hit-rate Chunk hit-rate
SF-F 99.66% 0.10%
SF-I 91.89% 0.10%

Table 4. Cache statistics for SecureFS-FAT and SecureFS-
inode with Iozone while reading and writing 1GB of data.
used.

Figure 8. Total time taken to handle chunk cache misses
and metadata cache misses. Iozone writing 1GB of data. The
x-axis shows the time.

in frequent metadata updates. Due to cascaded updates in
SF-I, the time taken to handle metadata misses in SF-I is
significantly higher (15×) than that of SF-F (see Figure 8).
Table 4 shows the hit rate of the metadata cache(M) and

the chunk cache(C). For SF-I, out of all the M accesses, 23%
were due to cascaded updates. This results in cache pollution
bringing its hit rate down to 91.89% (as compared to 99.66%
for SF-F).

SF-F SF-I
0.00

0.25

0.50

0.75

1.00

1.30

LL
C
lo
a
d
s

N
o
rm

a
liz
e
d

(a) Increase in LLC loads

SF-F SF-I
0.00

0.25

0.50

0.75

1.00

1.30

T
LB

fl
u
sh
e
s

N
o
rm

a
liz
e
d

(b) Increase in TLB flushes

Figure 9. SecureFS-FAT optimizes the metadata structure
resulting in performance benefits.

Furthermore, these additional cascaded updates result in
increasing the LLC (last level cache) loads due to reading the
parent slabs by ≈ 30% and also the number of TLB flushes

(due to enclave entry and exits) by the same amount (see
Figure 9). This results in a slowdown of 59% for the write
operations done in SF-I as compared to SF-F (see Figure 11)
when running in non-Graphene mode. For G-SF-F vs G-SF-I
(Graphene mode), the slowdown in the latter is 44%.

6.3 Throughput of the File System: Iozone
Here, we compare the throughput of SecureFS (G-SF-F and
G-SF-I) with GraphenePF (G-PF) for the stress testing work-
load, Iozone. We do not compare with Nexus because after a
successful mount Nexus keeps the data in the main memory
in a plaintext format, and only encrypts while unmounting
the volume. Hence, it is not a fair comparison. Iozone differs
from the other workloads used in the paper (Table 1) in the
sense that it does not have a compute phase and is a purely
I/O workload, as intended.

20 25 30
Latency of read() in ms

0%

20%

40%

60%

80%

100%

C
D

F

G-SF-F G-SF-IG-PF

(a) Read operations

25 30 35 40 45 50
Latency of write() in ms

0%

20%

40%

60%

80%

100%

C
D

F

G-SF-F G-SF-IG-PF

(b)Write operations

Figure 10. CDF [1] of read and write latencies for Iozone
while sequentially reading and writing 1GB of data within
Graphene.

Figure 10 shows the latency of read and write operations
for G-PF, G-SF-F, and G-SF-I. The latency of SecureFS vari-
ants follow a similar trend (as discussed in the previous
section). GraphenePF’s read latency outperforms SecureFS.
However, for write operations it has many long-latency op-
erations (heavy tailed distribution).

Graphene

Non-Graphene

Figure 11. Performance comparison for Iozone read and
write operations.

For write operations, G-PF shows a slow down of 7% com-
pared to G-SF-F while outperforming G-SF-I by 39%. For
reads, G-PF outperforms both the SecureFS variants by 19%.

10

SecureFS: A Secure File System for Intel SGX Anonymous Submission to RAID, 2021

6.3.1 Discussion: In GraphenePF, every file operation re-
sults into an OCALL. It does not maintain a cache of decrypted
blocks within the trusted memory region. On the other hand,
SecureFS maintains a cache of frequently accessed chunks
and slabs within the trusted region.

G-SF-F G-SF-IG-PF
0.00
0.25
0.50
0.75
1.00

1.78

d
T
LB

lo
a
d

m
is

se
s

N
o
rm

a
liz

e
d

(a) Increase in dTLB load misses.

0.000

0.250

0.500

0.750

1.000

1.505

d
T
LB

st
o
re

m
is
se
s

N
o
rm

a
liz
e
d

G-SF-F G-SF-IG-PF

(b) Increase in dTLB storemisses.

Figure 12. dTLB events for G-PF, G-SF-F, and G-SF-I.

By default, SecureFS memory maps the secure volume
into the untrusted memory as compared to GraphenePF that
uses the native OS’s page cache. However, when we inte-
grate SecureFS with Graphene, the𝑚𝑚𝑎𝑝 happens from the
trusted region. This results in an increase in the total num-
ber of asynchronous exits because of the EPC faults. These
additional faults results in a total increase of 78% and 50%
for dTLB load misses and dTLB store misses, respectively
(due to TLB flushing while exiting the enclaves), as shown
in Figure 12. Due to the security guarantees of Graphene, it
is not apparent how to share a pointer from the host to an
application running with Graphene.

In SF-F (without Graphene), where the SecureFS volume is
mapped in the untrusted region, these expensive page-faults
are avoided, and the performance of writes improves by 120%
(G-SF-F vs SF-F) (see Figure 11).

6.3.2 Hash operations. In the case of SecureFS, the ma-
jority of overheads are due to the hash operations. The CPU
we are using (see Table 2) contains dedicated instructions for
AES. However, it does not have dedicated support for SHA,
and hence, all the hash operations are done in software that
causes significant performance overheads.
We compared the performance of a non-SGX version of

SecureFS on an Intel CPU that lacks SHA instructions with a
Ryzen CPU (AMD Ryzen 7 3700X) that has dedicated SHA in-
structions. Since Ryzen does not have SGX, we compared the
performance with a non-SGX version of SecureFS. We con-
jecture, that the benefits should translate to SGX if executed
with a CPU that has SHA and SGX support. We observe a per-
formance improvement of 108% and 97% in SecureFS for read
and write operations, respectively (using a FAT table-based
metadata organization).

6.4 Comparison with GraphenePF: Regular
Workloads

We compare the performance of GraphenePF (G-PF) with
that of SecureFS-FAT (G-SF-F) and SecureFS-inode (G-SF-I)

for our set of synthetic and real world workloads (see Ta-
ble 1). Note that Graphene does not support Java applications,
hence, we skip License3j in this setting.

G
-P
F

G
-S
F-
F

G
-S
F-
I

G
-P
F

G
-S
F-
F

G
-S
F-
I

G
-P
F

G
-S
F-
F

G
-S
F-
I

G
-P
F

G
-S
F-
F

G
-S
F-
I

G
-P
F

G
-S
F-
F

G
-S
F-
I

G
-P
F

G
-S
F-
F

G
-S
F-
I

G
-P
F

G
-S
F-
F

G
-S
F-
I0.00

0.25

0.50

0.75

1.00

T
im

e
N
o
rm

a
liz
e
d

SVM LibCatena OpenSSL BTree HashJoin BFS PageRank

Figure 13. Comparison of the total time taken by G-SF-F
and G-SF-I, w.r.t G-PF.

As shown in Figure 13, G-SF-F and G-SF-I outperform
Graphene (G-PF) by up to 5% and 2%, respectively.

G-
PF

G-
SF

-F
G-

SF
-I

G-
PF

G-
SF

-F
G-

SF
-I

G-
PF

G-
SF

-F
G-

SF
-I

G-
PF

G-
SF

-F
G-

SF
-I

G-
PF

G-
SF

-F
G-

SF
-I

G-
PF

G-
SF

-F
G-

SF
-I

G-
PF

G-
SF

-F
G-

SF
-I0.00

0.25
0.50
0.75
1.00

AE
X

No
rm

al
ize

d

SVM LibCatena OpenSSL BTree HashJoin BFS PageRank

Figure 14. Total #asynchronous enclave exits (AEX).

6.4.1 Discussion. As already discussed, GraphenePF per-
forms an OCALL for every file system access. SecureFS opti-
mized this by a combination of caching andmemory-mapped
volumes. This results in a complete elimination of ECALLs
and OCALLs (apart from a few mandatory ones made by
Graphene [10]). However, as the volume is mapped inside
the trusted region, this results in an increase in page faults.
Hence, total asynchronous exits (AEX) increase by 18% on
an average (see Figure 14).

LLC store
misses

LLC load
misses

dTLB store
misses

dTLB load
misses

Figure 15. Different perf [36] events for G-SF-F, normalized
to G-PF.

Figure 15 shows the impact of these additional asynchro-
nous exits on HashJoin (representative workload). The total
number of page faults, dTLB load misses, and dTLB store

11

Anonymous Submission to RAID, 2021 Sandeep Kumar and Smruti R. Sarangi

misses increase by 40%, 20%, and 30%, respectively. However,
the number of instructions executed, LLC store misses and
LLC load misses do not see any increase because during an
enclave exit, only the TLBs are flushed, however, the caches
are kept intact [12]. Additionally, the workloads (Table 1)
are predominantly compute-intensive. The usual trend, as
shown in Figure 4d, is that they read some amount of data,
then processes it, and in the end write some data to the file
system. Here, the compute phase dominates.

Due to all these reasons, the performance of the workloads
remains roughly the same in all the three settings, unlike
in the case of Iozone. The key point to note is that the
performance is roughly the same and in fact we have occa-
sional speedups with our file system; moreover, we provide
an additional security guarantee – immunity from replay
attacks.

6.5 Comparison with Nexus
Here, we compare the performance of Nexus and SecureFS
for the workloads listed in Table 1. As noted above, as per
the Nexus design, once the secure volume is mounted, it is
accessible to any application in the system. The guarantee of
confidentiality and integrity is provided before the mount-
ing of the volume. Once mounted, all the data remains in a
plaintext format in the main memory. It is encrypted again
at the time of unmounting the volume.

S
F-
F

S
F-
I

S
F-
F

S
F-
I

S
F-
F

S
F-
I

S
F-
F

S
F-
I

S
F-
F

S
F-
I

S
F-
F

S
F-
I

S
F-
F

S
F-
I

S
F-
F

S
F-
I0.00

0.25

0.50

0.75

1.00

T
im

e
N
o
rm

a
liz
e
d

SVM LibCatena OpenSSL License3j BTree HashJoin BFS PageRank

Figure 16. Comparison of total time taken by SF-F and SF-I,
with respect to Nexus as the baseline (not shown).

We configure SecureFS such that only the file system is
protected. The OS never sees the data in the SecureFS volume.
However, it can read the address space of the application.
The performance comparison of Nexus with SecureFS-FAT
and SecureFS-inode is shown in Figure 16. SecureFS provides
freshness (no replay attack) guarantees along with confiden-
tiality and integrity with a negligible slowdown of 1.8% on
an average.

6.5.1 Discussion. In spite of Nexus reading and writing
data in plaintext in the memory, SecureFS incurs a negli-
gible overhead. The reasons are similar to the case with
GraphenePF. For an I/O intensiveworkload like Iozone, Nexus
outperforms SecureFS by 5×, as all the read and write hap-
pen in the untrusted main memory, in plaintext. Much of
this overhead is SGX’s default overhead.

6.6 Sensitivity Analyses
Here, we analyze the impact of key implementation parame-
ters: the chunk size and cache sizes on the performance of
SecureFS. We show the variation in the time taken by two
representative workloads: SVM and License3j. SVM reads
and writes the data in a sequential manner. License3j reads
the data randomly.

4K 8K 16K 32K 64K
Chunk size in KB

1.00

1.05

1.10

1.15

Sl
ow

do
wn

License3j SVM

(a) Sensitivity to chunk size.

2M 4M 8M 16M 32M 64M
Chunk cache in MB

0.95

1.00

1.05

1.10

1.15

Sl
ow

do
wn

License3j SVM

(b) Sensitivity to chunk cache
size (C).

Figure 17. Sensitivity of SecureFS to different chunk sizes
and chunk cache sizes.

6.6.1 Chunk size. As mentioned earlier, we use a chunk
size of 4 KB for our evaluation. Here, we measure the impact
of increasing the chunk size to 8 KB, 16 KB, 32 KB, and 64 KB.
Figure 17a shows the variation in the performance using

SecureFS-FAT. SecureFS-inode shows a similar trend (not
shown here for readability). The performance of License3j
worsens as we increase the chunk size. This is mainly be-
cause of internal fragmentation and the additional cost of
decryption and hashing. Hence, our choice of 4 KB is justi-
fied.

6.6.2 Cache sizes. As can be seen in Table 4, the hit rate
for the metadata cache is above 99% for SecureFS-FAT. Recall
that the chunk cache hit rate was less than 1% while reading
andwriting 1GB of data using Iozone. Hence, we evaluate the
performance of SecureFS-FAT by increasing the chunk cache
size from 2MB to 4MB, 8MB, and 16MB, respectively. They
represent 2.1%, 4.3%, 8.6%, and 17.3% of the EPC, respectively.

The performance of SVM and License3j remains somewhat
the same. License3j does not read a large amount of data;
hence, its performance is not very sensitive to the chunk
cache size (beyond our default size of 2MB). SVM on the
other hand accesses a large amount of data (50MB). Increas-
ing the chunk cache size increases the chunk cache hit rate
from 32% to 66%. However, due to the additional memory
requirement (for the chunk cache), the page fault rate in-
creases by 12%, causing the dTLB load and store misses to
increase by 61% and 15%, respectively. Given these conflict-
ing requirements, 2MB is a reasonable choice.

12

SecureFS: A Secure File System for Intel SGX Anonymous Submission to RAID, 2021

7 Conclusion
We showed in this paper that the needs of secure file systems
in the context of secure remote execution are very differ-
ent as compared to normal file systems. To leverage their
unique characteristics, it is necessary to design a bespoke file
system that can benefit from caching. Using our novel file
system design, we showed that we could provide additional
security guarantees namely immunity from replay attacks as
compared to state-of-the-art work with a minimal (≈ 1.8%)
overhead.

References
[1] 2021. Cumulative distribution function plot > Frequency distribution >

Continuous distributions > Distribution > Statistical Reference Guide
| Analyse-it® 5.65 documentation. https://analyse-it.com/docs/user-
guide/distribution/continuous/cdf-plot. (Accessed on 04/02/2021).

[2] Reto Achermann. 2020. mitosis-project/mitosis-workload-btree: The
BTree workload used for evaluation. https://github.com/mitosis-
project/mitosis-workload-btree. (Accessed on 10/03/2020).

[3] Reto Achermann. 2020. mitosis-project/mitosis-workload-hashjoin:
The HashJoin workload used for evaluation. https://github.com/
mitosis-project/mitosis-workload-hashjoin. (Accessed on 10/03/2020).

[4] ARM. 2019. TrustZone Arm Developer. https://developer.arm.com/ip-
products/security-ip/trustzone. (Accessed on 12/14/2019).

[5] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Mark L
Stillwell, David Goltzsche, David Eyers, Peter Pietzuch, and Christof
Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. Osdi,
689–704.

[6] S. Beamer, K. Asanovic, and D. Patterson. 2015. The GAP Benchmark
Suite. ArXiv abs/1508.03619 (2015).

[7] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and
Raoul Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy
Page Table-Based Attacks on Enclaved Execution. In 26th USENIX Secu-
rity Symposium (USENIX Security 17). USENIX Association, Vancouver,
BC, 1041–1056. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/van-bulck

[8] Dorian Burihabwa, Pascal Felber, Hugues Mercier, and Valerio Schi-
avoni. 2018. 2018 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom) (2018), 67–72.

[9] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and
Thomas R. Gross. 2015. Control-Flow Bending: On the Effectiveness
of Control-Flow Integrity. Security (2015), 161–176.

[10] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A
Practical Library OS for Unmodified Applications on SGX. In USENIX
Annual Technical Conference.

[11] Stephen Checkoway and Hovav Shacham. 2013. Iago attacks: why the
system call API is a bad untrusted RPC interface. In ASPLOS.

[12] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR
Cryptology ePrint Archive 2016 (2016), 86.

[13] Briand Djoko. 2021. sporgj/nexus-code: Secure cloud access/usage
control using client-side SGX. https://github.com/sporgj/nexus-code.
(Accessed on 03/17/2021).

[14] Judicael B. Djoko, Jack Lange, and Adam J. Lee. 2019. NeXUS: Practical
and Secure Access Control on Untrusted Storage Platforms using
Client-Side SGX. 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN) (2019), 401–413.

[15] R. Doomun, J. Doma, and S. Tengur. 2008. AES-CBC software exe-
cution optimization. In 2008 International Symposium on Information
Technology, Vol. 1. 1–8.

[16] Johannes Gtzfried, Moritz Eckert, Sebastian Schinzel, Tilo Mller, Jo-
hannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller.
2017. Cache attacks on intel SGX. Proceedings of the Proceedings of the
10th European Workshop on Systems Security, EuroSec 2017, co-located
with European Conference on Computer Systems, EuroSys 2017 (2017),
1–6.

[17] Marti A. Hearst. 1998. Support Vector Machines. IEEE Intelligent
Systems 13, 4 (July 1998), 18–28. https://doi.org/10.1109/5254.708428

[18] Intel.). Intel Software Guard Extensions. https://software.intel.com/en-
us/sgx/sdk. (Accessed on 10/25/2019).

[19] Intel. 2019. Intel SGX for Linux*. https://github.com/intel/linux-sgx.
(Accessed on 09/23/2019).

[20] Intel. 2019. Intel Software Guard Extensions | Intel Software. https:
//software.intel.com/en-us/sgx. (Accessed on 12/14/2019).

13

https://analyse-it.com/docs/user-guide/distribution/continuous/cdf-plot
https://analyse-it.com/docs/user-guide/distribution/continuous/cdf-plot
https://github.com/mitosis-project/mitosis-workload-btree
https://github.com/mitosis-project/mitosis-workload-btree
https://github.com/mitosis-project/mitosis-workload-hashjoin
https://github.com/mitosis-project/mitosis-workload-hashjoin
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://github.com/sporgj/nexus-code
https://doi.org/10.1109/5254.708428
https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk
https://github.com/intel/linux-sgx
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx

Anonymous Submission to RAID, 2021 Sandeep Kumar and Smruti R. Sarangi

[21] Sandeep Kumar, Diksha Moolchandani, Takatsugu Ono, and Smruti
R. Sarangi. 2019. F-LaaS: A Control-Flow-Attack Immune License-as-
a-Service Model .

[22] Matthew Lentz, Rijurekha Sen, Peter Druschel, and Bobby Bhattachar-
jee. 2018. SeCloak: ARM Trustzone-based Mobile Peripheral Control.
MobiSys 18 (2018), 13.

[23] Ximing Liu, Wenwen Wang, Lizhi Wang, Xiaoli Gong, Ziyi Zhao, and
Pen-Chung Yew. 2020. Regaining Lost Seconds: Efficient Page Preloading
for SGX Enclaves. Association for Computing Machinery, New York,
NY, USA, 326–340. https://doi.org/10.1145/3423211.3425673

[24] Saurav Mohapatra. 2019. mohaps/libcatena: a simple toy blockchain
written in C++ for learning purposes. https://github.com/mohaps/
libcatena. (Accessed on 09/23/2019).

[25] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and
Christof Fetzer. 2018. Varys: Protecting SGX Enclaves from Practical
Side-Channel Attacks. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, Boston, MA, 227–240. https:
//www.usenix.org/conference/atc18/presentation/oleksenko

[26] OpenSSL. 2019. OpenSSL. https://www.openssl.org/. (Accessed on
12/07/2019).

[27] Paweł Marczewski,Dmitrii Kuvaiskii,Michał Kowalczyk . 2021. Per-
formance tuning and analysis — Graphene documentation. https:
//graphene.readthedocs.io/en/latest/devel/performance.html. (Ac-
cessed on 03/27/2021).

[28] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis,
Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015.
VC3: Trustworthy data analytics in the cloud using SGX. Proceedings -
IEEE Symposium on Security and Privacy 2015-July, 38–54.

[29] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek
Saxena. 2016. Preventing Page Faults from Telling Your Secrets. In
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security (Xi’an, China) (ASIA CCS ’16). ACM, New

York, NY, USA, 317–328.
[30] Shweta Shinde, Shengyi Wang, Pinghai Yuan, Aquinas Hobor, Abhik

Roychoudhury, and Prateek Saxena. 2019.
[31] J. Shun and G. Blelloch. 2013. Ligra: a lightweight graph processing

framework for shared memory. In PPoPP ’13.
[32] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph

Processing Framework for Shared Memory. SIGPLAN Not. 48, 8 (Feb.
2013), 135–146. https://doi.org/10.1145/2517327.2442530

[33] Shruti Tople, Ayush Jain, and Prateek Saxena. 2015.
[34] Peter Verhas. 2019. License3j: Free Licence Management Library.

https://github.com/verhas/License3j. (Accessed on 11/18/2019).
[35] NicoWeichbrodt, Pierre Louis Aublin, and Rüdiger Kapitza. 2018. SGX-

Perf: A performance analysis tool for intel SGX enclaves. Proceedings of
the 19th International Middleware Conference, Middleware 2018 (2018),
201–213.

[36] Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. 2018. sgx-
perf: A Performance Analysis Tool for Intel SGX Enclaves. In Middle-
ware.

[37] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost
Cycles with HotCalls: A Fast Interface for SGX Secure Enclaves. 2017
ACM/IEEE 44th Annual International Symposium on Computer Archi-
tecture (ISCA), 81–93.

[38] Wikipedia contributors. 2019. Strace — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Strace&oldid=
922720825. [Online; accessed 17-November-2019].

[39] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-
channel attacks: Deterministic side channels for untrusted operating
systems. In Proceedings - IEEE Symposium on Security and Privacy,
Vol. 2015-July.

[40] Ning Zhang, Kun Sun, Wenjing Lou, and Y. Thomas Hou. 2016. CaSE:
Cache-Assisted Secure Execution on ARM Processors. Proceedings -
2016 IEEE Symposium on Security and Privacy, SP 2016 (2016).

14

https://doi.org/10.1145/3423211.3425673
https://github.com/mohaps/libcatena
https://github.com/mohaps/libcatena
https://www.usenix.org/conference/atc18/presentation/oleksenko
https://www.usenix.org/conference/atc18/presentation/oleksenko
https://www.openssl.org/
https://graphene.readthedocs.io/en/latest/devel/performance.html
https://graphene.readthedocs.io/en/latest/devel/performance.html
https://doi.org/10.1145/2517327.2442530
https://github.com/verhas/License3j
https://en.wikipedia.org/w/index.php?title=Strace&oldid=922720825
https://en.wikipedia.org/w/index.php?title=Strace&oldid=922720825

	Abstract
	1 Introduction
	2 Background
	2.1 A Primer on Intel SGX
	2.2 Metadata organization of a File System
	2.3 Attacks on File Systems

	3 Related Work and Replay attacks
	3.1 Graphene Protected Files
	3.2 Nexus

	4 Characterization
	4.1 Experimental Setup
	4.2 Access patterns
	4.3 Distribution of File Access Calls over Time
	4.4 Throughput
	4.5 Key Insights

	5 Design and Implementation
	5.1 Design Goals
	5.2 Threat Model
	5.3 Overview of the Design
	5.4 Organization
	5.5 Storage on the Host File System
	5.6 Key Structures of SecureFS
	5.7 Metadata Organization
	5.8 SecureFS-FAT
	5.9 File System Operations
	5.10 Preventing Replay Attacks
	5.11 Concurrency and Consistency
	5.12 SecureFS-inode

	6 Evaluation
	6.1 Evaluation strategy
	6.2 SecureFS-FAT vs SecureFS-inode
	6.3 Throughput of the File System: Iozone
	6.4 Comparison with GraphenePF: Regular Workloads
	6.5 Comparison with Nexus
	6.6 Sensitivity Analyses

	7 Conclusion
	References

