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Abstract—Hadoop MapReduce is a popular framework for
distributed storage and processing of large datasets and is used
for big data analytics. It has various configuration parameters
which play an important role in deciding the performance i.e.,
the execution time of a given big data processing job. Default
values of these parameters do not result in good performance
and therefore it is important to tune them. However, there
is inherent difficulty in tuning the parameters due to two
important reasons - first, the parameter search space is large
and second, there are cross-parameter interactions. Hence,
there is a need for a dimensionality-free method which can
automatically tune the configuration parameters by taking
into account the cross-parameter dependencies. In this paper,
we propose a novel Hadoop parameter tuning methodology,
based on a noisy gradient algorithm known as the simul-
taneous perturbation stochastic approximation (SPSA). The
SPSA algorithm tunes the selected parameters by directly
observing the performance of the Hadoop MapReduce system.
The approach followed is independent of parameter dimensions
and requires only 2 observations per iteration while tuning. We
demonstrate the effectiveness of our methodology in achieving
good performance on popular Hadoop benchmarks namely
Grep, Bigram, Inverted Index, Word Co-occurrence and Terasort.
Our method, when tested on a 25 node Hadoop cluster
shows 45-66% decrease in execution time of Hadoop jobs on
an average, when compared to prior methods. Further, our
experiments also indicate that the parameters tuned by our
method are resilient to changes in number of cluster nodes,
which makes our method suitable to optimize Hadoop when it
is provided as a service on the cloud.

Keywords-Hadoop Parameter Tuning, Simultaneous Pertur-
bation Stochastic Approximation, Cloud Computing

I. INTRODUCTION

We are in the era of big data and huge volumes of data
are generated in various domains like social media, financial
markets, transportation etc. Quick analysis of such huge
quantities of unstructured data is a key requirement for
achieving success in many of these domains. Performing
distributed sorting, extracting hidden patterns and unknown
correlations and other useful information is critical for
making better decisions. To efficiently analyze large vol-
umes of data, there is a need for parallel and distributed
processing/programming methodologies.

MapReduce [1] is a popular computation framework
which is optimized to process large amounts of data. It
is designed to process data in parallel and in a distributed

fashion using resources built out of commodity hardware.
MapReduce deviates from the norm of other computation
frameworks as it minimizes the movement of data. The
Map and Reduce phases analyze the data which is split into
several chunks and stored in a distributed manner across
nodes. The main operational logic of MapReduce is based
on < key, value > pairs. All the operations are done on
these key value pairs. Apache Hadoop [2] is a popular open-
source implementation of MapReduce. Besides MapReduce,
it comprises of the Hadoop Distributed File System (HDFS),
which stores data and manages the Hadoop cluster (see [2]).
Hadoop cluster consists of a master node which handles the
scheduling of jobs and placement of files on the cluster. The
rest of the nodes are slave nodes where the actual execution
of job and storing of file is done.

The Hadoop framework provides different parameters
that can be tuned according to the workload and hardware
resources. For e.g., a file is split into one or more data blocks
and these blocks are stored in a set of DataNodes. The block
size is controlled by a parameter dfs.block.size, which can
be set based on the input data size of the workload and
the cluster configuration. The performance of an application
running on the Hadoop framework is affected by the values
of such parameters. The default values of these parameters
generally do not give a satisfactory performance. Therefore,
it is important to tune these parameters according to the
workload. The performance of an application on Hadoop
cannot be quantified in terms of these parameters and hence
finding best parameter value configuration for a given appli-
cation proves to be a tricky task. In addition, it is difficult
to tune these parameters owing to two other reasons. First,
due to the presence of a large number of parameters (about
200, encompassing a variety of functionalities) the search
space is large and complex. Second, there is a pronounced
effect of cross-parameter interactions, i.e., the parameters are
not independent of each other. For instance, the parameter
io.sort.mb controls the number of spills written to disk
(map phase). If it is set high, the spill percentage of Map
(controlled by sort.spill.percent) should also be set to a high
value. Thus, the complex search space along with the cross-
parameter interaction does not make Hadoop amenable to
manual tuning.

Need for tuning the Hadoop parameters to enhance the



performance was identified in [3]. Attempts toward building
an optimizer for hadoop performance started with Starfish
[4]. Recent efforts in the direction of automatic tuning of the
Hadoop parameters include MROnline [5] and PPABS [6].
We observe that collecting statistical data to create virtual
profiles and estimating execution time using mathematical
model (as in [3]-[6]) requires significant level of expertise.
Moreover, since Hadoop MapReduce is evolving continu-
ously with changes in management of workloads, the math-
ematical model also has to be updated. With new versions
of Hadoop being released, these mathematical models might
not be applicable, due to which a model-based approach
might fail.

In order to address the above shortcomings, we suggest a
method that directly utilizes the data from the real system
and tunes the parameters via feedback. This approach is
based on a noisy gradient stochastic optimization method
known as the simultaneous perturbation stochastic approx-
imation (SPSA) algorithm [7]. In our work, we adapt the
SPSA algorithm to tune the parameters used by Hadoop to
allocate resources for program execution.

Our paper is organised as follows: we provide a detailed
description of our SPSA-based approach in the next section.
Following it, we describe the experimental setup and present
the results in Section III. Section IV concludes the paper and
suggests future enhancements.

II. AUTOMATIC PARAMETER TUNING

The performance of various complex systems such as
traffic control, unmanned aerial vehicle (UAV) control etc.
depends on a set of tunable parameters (denoted by θ). Pa-
rameter tuning in such cases is difficult because of the black-
box nature of the problem and the curse-of-dimensionality
[8]. In this section, we discuss the general theme behind the
methods that tackle these bottlenecks and their relevance to
the problem of tuning the Hadoop parameters.

A. Bottlenecks in Parameter Tuning

In many systems, the exact nature of the dependence of
the performance on the parameters is not known explicitly
i.e., the performance of the system cannot be expressed as
an analytical function of the parameters. As a result, the
parameter setting that offers the best performance cannot be
computed apriori. However, the performance of the system
can be observed for any given parameter setting either
from the system or a simulator of the system. Hadoop
MapReduce exhibits this black-box nature, because it is not
well structured like SQL. In such systems, one can resort
to black-box or simulation-based optimization methods that
tune the parameters based on the output observed from the
system/simulator without knowing its internal functioning.
As illustrated in Fig. 1, the black-box optimization scheme
sets the current value of the parameter based on the past
observations.
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θn = h(f(θ1), . . . , f(θn−1))

Figure 1: The simulation optimization algorithm makes use
of the feedback received from the system/simulator to tune
the parameters. Here n = 1, 2, . . . denotes the trial number,
θn is the parameter setting at the nth trial and f(·) is
the performance measure. The map h makes use of past
observations to compute the current parameter setting.

The following issues arise in the context of black-box
optimization:

1) Number of observations made and the cost of obtain-
ing an observation from the system/simulator - These
are directly dependent on the size of the parameter
space. As the number of parameters increase, there
will be an exponential increase in the size of the
search space, which is often referred to as the curse-
of-dimensionality. Additionally, in many applications,
even though the number of parameters are small, the
search space will still be huge because each of the
parameters can take continuous values, i.e., values in
R. Since it is computationally expensive to search such
a large parameter space, it is important for black- box
optimization methods to make as few observations as
possible.

2) Cross-parameter dependencies - Parameters cannot be
assumed to be independent of each other. A black-
box optimization method must have some technique
to take into account cross-parameter interactions and
still be able to provide a set of optimal parameters.

B. Noisy Gradient based Optimization

In order to take the cross-parameter interactions into
account, one has to make use of the sensitivity of the
performance measure with respect to each of the parameters
at a given parameter setting. This sensitivity is formally
known as the gradient of the performance measure at a given
setting. If there are n parameters to tune, then it takes only
O(n) observations to compute the gradient of a function at
a given point. However, even O(n) computations are not
desirable if each observation is itself costly.

Consider the noisy gradient scheme given in (1) below.

θn+1 = θn − αn
(
∇fn +Mn

)
, (1)

where n = 1, 2 . . . denotes the iteration number, ∇fn ∈ Rn
is the gradient of function f , Mn ∈ Rn is a zero-mean noise
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Figure 2: Noisy Gradient scheme. Notice that the noise can
be filtered by an appropriate choice of diminishing step sizes.

sequence and αn is the step-size. Fig. 2 presents an intuitive
picture of how a noisy gradient algorithm works. Here, the
algorithm starts at θ0 and needs to move to θ∗ which is
the desired optimal solution. The solid lines denote the true
gradient step (i.e., αn∇fn) and the dash-dotted circles show
the region of uncertainty due to the noise term αnMn. The
dotted line denotes the fact that the true gradient is disturbed
and each iterate is pushed to a different point within the
region of uncertainty. The idea here is to use diminishing
step-sizes to filter the noise and eventually move towards
θ∗. The simultaneous perturbation stochastic approximation
(SPSA) algorithm is a noisy gradient algorithm which works
as illustrated in Fig. 2. It requires only 2 observations
from the system per iteration. Thus the SPSA algorithm is
extremely useful in cases when the dimensionality is high
and the observations are costly. We adapt it to tune the
parameters of Hadoop. By adaptively tuning the Hadoop
parameters, we intend to optimize the Hadoop job execution
time, which is the performance metric (i.e., f(θ)) in our
experiments.

C. Simultaneous Perturbation Stochastic Approximation
(SPSA)

We use the following notation:
1) θ ∈ X ⊂ Rn denotes the tunable parameter. Here n

is the dimension of the parameter space. Also, X is
assumed to be a compact and convex subset of Rn.

2) Let x ∈ Rn be any vector, then x(i) denotes its ith

co-ordinate, i.e., x = (x(1), . . . , x(n)).
3) f(θ) denotes the performance of the system for param-

eter θ. Let f be a smooth and differentiable function
of θ.

4) ∇f(θ) = ( ∂f
∂θ(1) , . . . ,

∂f
∂θ(n) ) is the gradient of the

function, and ∂f
∂θ(i) is the partial derivative of f with

respect to θ(i).
5) ei ∈ Rn is the standard n-dimensional unit vector with

1 in the ith co-ordinate and 0 elsewhere.
Formally the gradient is given by

∂f

∂θ(i)
= lim
h→0

f(θ + hei)− f(θ)

h
. (2)

In (2), the ith partial derivative is obtained by perturbing the
ith co-ordinate of the parameter alone and keeping rest of the
co-ordinates the same. Thus, we require n+ 1 operations to

compute the gradient once using perturbations. This can be
a shortcoming in cases when it is computationally expensive
to obtain measurements of f and the number of parameters
is large.

The idea behind the SPSA algorithm is to perturb not just
one co-ordinate at a time but all the co-ordinates together
simultaneously in a random fashion. However, one has to
carefully choose these random perturbations so as to be able
to compute the gradient. Formally, a random perturbation
∆ ∈ Rn should satisfy the following assumption.

Assumption 1: For any i 6= j, i = 1, . . . , n, j =
1, . . . , n, the random variables ∆(i) and ∆(j) are zero-
mean,independent, and the random variable Zij given by
Zij = ∆(i)

∆(j) is such that E[Zij ] = 0 and it has finite second
moment.
An example of such a random perturbation is the following:
Let ∆ ∈ Rn be such that, each of its co-ordinates ∆(i)
is an independent Bernoulli random variable taking values
−1 or +1 with equal probability, i.e., Pr{∆(i) = 1} =
Pr{∆(i) = −1} = 1

2 for all i = 1, . . . , n. This random
variable satisfies Assumption 1.

D. Noisy Gradient Recovery from Random Perturbations
Let ∇̂fθ denote the gradient estimate, and let ∆ ∈ Rn

be any perturbation vector satisfying Assumption 1. Then
for any small positive constant δ > 0, the one-sided SPSA
algorithm [9] obtains an estimate of the gradient according
to equation (3) given below.

∇̂fθ(i) =
f(θ + δ∆)− f(θ)

δ∆(i)
. (3)

We now look at the expected value of ∇̂fθ(i), which is given
by the following:

E[∇̂fθ(i)|θ] =
∂f

∂θ(i)
+ o(δ). (4)

The above equation can be easily computed, since
E
[
∂f
∂θ(j)

∆(j)
∆(i) |θ

]
= 0. This follows from the property of

∆ in Assumption 1. Thus E[∇̂fθ(i)] → ∇fθ(i) as δ → 0.
Notice that in order to compute the gradient ∇fθ at the point
θ the SPSA algorithm requires only 2 measurements namely
f(θ−δ∆) and f(θ+δ∆). An extremely useful consequence
is that the gradient estimate is not affected by the number
of dimensions. The complete SPSA algorithm is shown in
Algorithm 1, where {αn} is the step-size schedule and Γ is
a projection operator that keeps the iterates within X .

Algorithm 1 uses a noisy gradient estimate (in line 6)
and at each iteration takes a step in the negative gradient
direction so as to minimize the cost function. The noisy
gradient update can be re-written as

θn+1 = Γ
(
θn − αn

(
E[∇̂fn|θn] + ∇̂fn −E[∇̂fn|θn])

)
(5)

= Γ
(
θn − αn

(
∇fn +Mn+1 + εn)

)



Algorithm 1 Simultaneous Perturbation Stochastic Approx-
imation

1: Let initial parameter setting be θ0 ∈ X ⊂ Rn
2: for n = 1, 2 . . . , N do
3: Observe the performance of system f(θn).
4: Generate a random perturbation vector ∆n ∈ Rn.
5: Observe the performance of system f(θn + δ∆n).
6: Compute the gradient estimate ∇̂fn(i) =

f(θn+δ∆n)−f(θn−δ∆n)
2×δ∆n(i) .

7: Update the parameter in the negative gradient direc-
tion θn+1(i) = Γ

(
θn(i)− αn f(θn+δ∆n)−f(θn)

δ∆n(i)

)
.

8: end for
9: return θN+1

where Mn+1 = ∇̂fn − E[∇̂fn|θn] is an associated mar-
tingale difference sequence under the sequence of σ-fields
Fn = σ(θm,m ≤ n,∆m,m < n), n ≥ 1 and εn is a small
bias due to the o(δ) term in (4). The iterative update in (5)
is known as a stochastic approximation [10] recursion. As
per the theory of stochastic approximation, in order to filter
out the noise, the step-size schedule {αn} needs to satisfy
the conditions below.

∞∑
n=0

αn =∞,
∞∑
n=0

α2
n <∞. (6)

The first of the conditions in (6) ensures that the algorithm
does not converge to a non-optimal parameter configuration
prematurely, while the second ensures that the noise asymp-
totically vanishes. If the above conditions are satisfied, the
iterates of the algorithm converge to local minima (see [10]).
However, in practice local minima corresponding to small
valleys are avoided due either to the noise inherent in the
update or one can periodically inject some noise so as to let
the algorithm explore further. Also, though the result stated
in [10] is only asymptotic in nature, in most practical cases
convergence is observed in a finite number of steps.

E. Adapting SPSA Algorithm to tune Hadoop Parameters

The performance of an application running on Hadoop can
be measured by different metrics - namely amount of mem-
ory used, number of jobs spawned, execution time etc. Out
of these, measuring the execution time of a job is the most
practical, as it gives an idea about the job dynamics. Our
method involves adapting SPSA algorithm to improve the
execution time of jobs running on Hadoop/Hive. Thus, with
respect to Section II B, the function f(θ) hereon denotes the
execution time of a workload for a given parameter vector θ.
We believe that this multi-variate function representing the
execution time of a workload is multimodal and has multiple
local minima (we do not assume any form of the function -
like convexity, or non-linear). Thus, finding a local minima
is as good as finding a global minimizer. All minima of the

function lead to a similar performance with respect to the
execution time.

The SPSA algorithm needs each of the parameter com-
ponents to be real-valued i.e., θ ∈ X ⊂ Rn. However,
most of the Hadoop parameters that are of interest are
not Rn-valued. Thus, on the one hand we need a set of
Rn-valued parameters that the SPSA algorithm can tune
and a mapping that takes these Rn-valued parameters to
the Hadoop parameters. In order to make things clear we
introduce the following notation:

1) The Hadoop parameters are denoted by θH and the
Rn-valued parameters tuned by SPSA are denoted by
θA

1.
2) Si denotes the set of values that the ith Hadoop

parameter can assume. θmin
H (i), θmax

H (i) and θdH(i)
denote the minimum, maximum and default values that
the ith Hadoop parameter can assume.

3) θA ∈ X ⊂ Rn and θH ∈ S1 × . . .× Sn.
4) θH = µ(θA), where µ is the function that maps θA ∈

X ⊂ Rn to θH ∈ S1 × . . .× Sn.
In this paper, we choose X = [0, 1]n, and µ : θ → Rn

such that µ(θA)(i) = y, where

y = (θmax
H (i)− θmin

H (i))θA(i) + θmin
H (i)

. For an integer valued parameter, we let µ(θA)(i) = byc.
We chose δ∆n ∈ Rn to be independent random variables,
such that Pr{δ∆n(i) = − 1

θmax
H (i)−θmin

H (i)
} = Pr{δ∆n(i) =

+ 1
θmax
H (i)−θmin

H (i)
} = 1

2 . This perturbation sequence ensures
that the Hadoop parameters assuming only integer values
change by a magnitude of at least 1 in every perturbation.
Otherwise, using a perturbation whose magnitude is less
than 1

θmax
H (i)−θmin

H (i)
might not cause any change to the

corresponding Hadoop parameter resulting in an incorrect
gradient estimate.

The conditions for the step-size schedule {αn} are asymp-
totic in nature and are required to hold for convergence to
local minima. However, in practice, a constant step size
can be used since one reaches closer to the desired value
in a finite number of iterations. We know apriori that the
parameters tuned by the SPSA algorithm belong to the
interval [0, 1] and it is enough to have step-sizes of the
order of mini(

1
θmax
H (i)−θmin

H (i)
) (since any finer step-size

used to update the SPSA parameter θA(i) will not cause
a change in the corresponding Hadoop parameter θH(i)). In
our experiments, we chose αn = 0.01,∀n ≥ 0 and observed
convergence in about 20 iterations.

III. EXPERIMENTAL EVALUATION

In this paper, we have used use Hadoop versions 1.0.3,
2.7.3 and Hive version 2.1.1 for our experiments. First,
we justify the selection of parameters to be tuned in our

1Here subscripts A and H are abbreviations of the keywords Algorithm
and Hadoop respectively



experiments. Then, we give details about the implementation
followed by discussion of results.

A. Parameter Selection

Hadoop consists of myriad of tunable parameters, how-
ever most of them are concerned with Hadoop setup and
bookkeeping activities and does not affect the performance
of workloads. Based on the data flow analysis of Hadoop
MapReduce (see [2]) we identify 11 parameters which
are found to critically affect the operation of HDFS and
the Map/Reduce operations (listed in Table I). We tune
parameters which are directly Hadoop dependent, for e.g.,
number of reducers, I/O utilization parameter etc. and avoid
tuning parameters, which are not directly related to Hadoop
such as mapred.child.java.opts which are best left for cluster
or OS level optimization.

B. Cluster Setup and Benchmarks

Our Hadoop cluster consists of 25 nodes. Each node has
a 8 core Intel Xeon E3, 2.50 GHz processor, 3.5 TB HDD,
16 GB memory and Gigabit connectivity.

In order to evaluate the performance of our method, we
use representative benchmark applications. Terasort takes
as input a text data file (generated using teragen) and
sorts it. Grep searches for a particular pattern in a given
input file. Bigram counts all unique sets of two consecutive
words in a set of documents, while Inverted Index generates
word to document indexing from a list of documents. Word
Co-occurrence is a popular Natural Language Processing
program which computes the word co-occurrence matrix of
a large text collection.

C. Hive Workload

MapReduce, although capable of processing huge
amounts of data, is often used with a wrapper around it to
ease its usage. Hive [11] is one such wrapper which provides
an environment where MapReduce jobs can be specified
using SQL. Its performance can be tested on clusters using
the TPCDS benchmark. This benchmark generates data
(scale factor) as per requirement and executes a suite of SQL
queries on the generated data. The SQL queries focus on dif-
ferent aspects of performance. In our experiments, we have
selected 4 queries, which are first optimized using SPSA
(see Fig. 3). Following this, we compare the performance of
TPCDS using the parameters tuned by SPSA algorithm and
values suggested in the TPCDS manual (see Fig. 4d).

D. Learning/Optimization Phase

SPSA runs a Hadoop job with a different configuration in
each iteration. We refer to these iterations as the optimization
or the learning phase. The algorithm eventually converges
to an optimal value of the configuration parameters. The job
execution time corresponding to the converged parameter
vector is optimal for the corresponding application. During

our evaluations we have seen that SPSA algorithm converges
within 10 - 15 iterations and within each iteration it makes
two observations, i.e. it executes Hadoop job twice, taking
the total count of Hadoop runs during the optimization phase
to 20 - 30. It is of utmost importance that the optimization
phase is fast, otherwise it can overshadow the benefits which
it provides.

Partial Data: In order to ensure a fast optimization
phase, we execute the Hadoop jobs (during this phase) on a
partial workload. Deciding the size of this partial workload
(denoted Np) is crucial as the run time on a small work load
will be eclipsed by the job setup and cleanup time. We take
cue from Hadoop processing system to determine the size of
the partial workload. Hadoop splits the input data based on
the block size (denoted bS) of HDFS and spawns a map for
each of the splits. The number of map tasks that can run in
parallel at a given time is upper bounded by the total map
slots (denoted m) available in the cluster. Using this fact,
we set the size of the partial data set as:

Np = 2 ∗ bS ∗m

Using workload of this size, Hadoop will use two waves
of the maps jobs to finish the map operation. That will
allow SPSA algorithm to capture the statistics of a single
wave and the correlations between two successive waves.
Our expectation (and as borne by our results) is that the value
of configuration parameters which optimize these two waves
of map jobs also optimize all the subsequent waves as those
are repetitions of similar map jobs. In the cases of Bigram
and Inverted Index benchmark, we observed that even with
small amount of data, the job take a long time finish, as they
are reduce-intensive benchmarks. So, while training these
benchmarks, we have used small sized input data files, which
results in absence of two waves of map tasks. However, since
in these applications, reduce operations take precedence, the
absence of two waves of map tasks did not create much of
a hurdle.

E. Experimental Setup

We optimize Terasort using a partial data set of size
30GB, Grep on 22GB, Word Co-occurrence and Inverted
Index on 1GB and Bigram count on 200MB of data set. For
Word-Cooccurrence, Grep and Bigram benchmarks we use
the Wikipedia dataset of ≈ 50GB [5]. We use the default
configuration of the parameters as the initial point for the
optimization during the learning/optimization phase.

SPSA algorithm terminates when either the change in
gradient estimate is negligible or the maximum number of
iterations have been reached. An important point to note is
that Hadoop parameters can take values only in a fixed range.
We handle this by projecting the tuned parameter values into
the range set (component-wise).



F. Discussion of Results

We compare our method with Starfish [4] and Profiling
and Performance Analysis-based System (PPABS) [6] frame-
works. Starfish is designed for Hadoop v1 only, whereas
PPABS works with the recent versions also. To run Starfish,
we use the executable hosted by the authors of [4] to profile
the jobs run on partial workloads. Then execution time of
new jobs is obtained by running the jobs using parameters
provided by Starfish. For testing PPABS, we collect and use
the datasets as described in [6].

1) Performance Evaluation: Our method initializes the
parameters to the default values. The execution time corre-
sponding to this initial parameter configuration is given by
first data point in all plots of Fig. 3. The initial variation
in the execution times of the benchmarks is due to the
noisy nature of the gradient estimate. These eventually die
down after a few iterations. Since the execution times of the
applications are stochastic in nature, we run 10 Monte Carlo
simulations with the optimal parameters tuned by SPSA.
This gives us the average execution time as well as the
standard deviation for each benchmark.

As can be observed from Fig. 4, SPSA reduces the
execution time of Terasort benchmark by 60% − 63%
when compared to default settings and by 40% − 60%
when compared to Starfish optimizer. For Inverted Index
benchmark the reduction is about 80% when compared to
default settings and about 40% when compared to Starfish.
In the case of Word Co-occurrence, the observed reduction
is 70% when compared to default settings and 50% when
compared to Starfish.

SPSA, while finding the optimal configuration, factors
in the co-relation among the parameters (Table I). For
example, in Terasort, a small value (0.14 or 14%) of
io.sort.spill.percent will generate a lot of spilled files of
small size. Because of this, the value of io.sort.factor has
been increased to 475 from the default value of 10. This will
ensure that a large number of spilled files (475) are com-
bined to generate the partitioned and sorted file. Similarly,
shuffle.input.buffer.percent and inmem.merge.threshold (0.14
and 9513 respectively) act as a threshold beyond which in-
memory merge of files (output by map) is triggered. Because
of low value of io.sort.spill.percent the size of the spilled
files will be small, and it would take a large number of files
(9513) to fill the 14% of reduce memory.

Default value of number of reducers (i.e., 1) generally
does not work in practical situations. However, increasing it
to a very high number also creates an issue as it results in
more network and disk overhead. SPSA optimizes this based
on the map output size. Grep benchmark, produces very
little map output, and even smaller sized data to be shuffled.
Hence io.sort.mb value is reduced to 50 from default 100
(see Table I) and number of reducers is set to 1. Further,
value of inmem.merge.threshold has been reduced to 681

from 1000 as there is not much data to work on.
The difference in the values of the tuned parameter in

Hadoop 1 and Hadoop 2 for the same benchmark arises
because of inherent differences in their architecture and how
jobs are executed.

2) Dynamically Changing Cluster Configuration: The
tuning of parameters by SPSA is independent of the number
of nodes in the cluster. This is substantiated by the results
shown in Fig. 4c, which shows the execution times of
benchmark applications when the number of nodes in the
cluster was reduced to half. The parameter values provided
by SPSA are same as the optimal values provided by it, for
the original cluster configuration (as described in Section
III-B). The execution times (in seconds) for the benchmark
applications, based on multiple Monte Carlo simulations are:
Terasort: 456 ± 13.12, Bigram: 630 ± 17, Inverted Index:
251± 4.2 and Word Co-occurrence: 2786.4± 16.9.

The tuning of parameters by SPSA depends on the con-
figuration of the nodes (which is not changed when nodes
are added or removed), as some Hadoop parameters like
io.sort.mb are influenced by memory available in each node.
The lack of dependency on number of nodes in the cluster
comes from the fact that SPSA optimizes the performance of
a single map or reduce wave. This results in optimization of
all subsequent waves. Addition or removal of nodes means
there will be less or more number of map-reduce waves.

3) Comparison against Random Configuration: As a
sanity check, we compare the performance of SPSA against
a random setting of the configuration parameters. When
compared with default setting, where the number of reducer
is 1, one can get a better performance by just increasing this
number. However, that is not optimal and can be improved
further by using a more mathematical proven techniques like
SPSA. The results (average of 5 executions) are shown in
figure 4c. One issue with random setting is that sometime
it will lead to failure of job. We have not considered those
jobs for the average result calculation.

G. Advantages of SPSA

The above discussion indicates that SPSA performs well
in optimizing Hadoop parameters. Below, we summarize the
advantages of using our proposed method:

1) Scalable: Parameters can be easily added and removed
from the set of tunable parameters, which make our
method suitable for scenarios where the user wants to
have control over the parameters to be tuned.

2) Independent of Hadoop version: SPSA does not rely
on the internal structure of Hadoop and only observes
the final execution time (easily accessible).

3) SPSA takes into consideration multiple values of ex-
ecution time of a job for the same parameter setting
(randomness in execution time). Multiple observations
helps SPSA to remove the randomness in the job
which arise due to the underlying hardware.



Parameter Name Default
Terasort Grep Bigram Inverted Index Word Co-occurrence

v1.0.3 v2.7.3 v1.0.3 v2.7.3 v1.0.3 v2.7.3 v1.0.3 v2.7.3 v1.0.3 v2.7.3

io.sort.mb 100 149 524 50 291 751 779 872 202 221 912

io.sort.spill.percent 0.80 0.14 0.89 0.83 0.88 0.53 0.53 0.2 0.68 0.75 0.47

io.sort.factor 10 475 115 5 57 5 178 50 85 40 5

shuffle.input.buffer.percent 0.7 0.86 0.87 0.67 0.78 0.43 0.43 0.83 0.58 0.65 0.37

shuffle.merge.percent 0.66 0.14 0.83 0.63 0.74 0.89 0.39 0.83 0.54 0.71 0.33

inmem.merge.threshold 1000 9513 318 681 200 4201 200 1095 948 1466 200

reduce.input.buffer.percent 0.0 0.14 0.19 0.13 0.0 0.31 0.0 0.17 0.07 0.12 0.0

mapred.reduce.tasks 1 95 22 1 1 33 35 76 16 14 41

io.sort.record.percent 0.05 0.14 - 0.1 - 0.31 - 0.17 - 0.2 -

mapred.compress.map.output false true - false - false - true - false -

mapred.output.compress false false - false - false - false - false -

reduce.slowstart.completedmaps 0.05 - 0.23 - 0.13 - 0.05 - 0.18 - 0.4

mapreduce.job.jvm.numtasks 1 - 2 - 6 - 18 - 5 - 21

mapreduce.job.maps 2 - 23 - 11 - 35 - 17 - 2

Table I: Default value of parameters and their values tuned by SPSA (the last three parameters are defined for Hadoop v2)
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Figure 3: Convergence of SPSA for different benchmarks on Hadoop (v1 and v2) and HIVE on MapReduce

4) Parameters optimized by SPSA are not dependent on
the number of nodes. This enables SPSA to be used
for optimizing Hadoop on the cloud like Amazon’s
AWS, Microsoft’s Azure, etc.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a tuning method based on the
simultaneous perturbation stochastic approximation (SPSA)
algorithm for Hadoop. The salient features of the SPSA
based scheme included its ability to use observations from
a real system, its insensitivity to the number of parameters
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Figure 4: Benchmark application execution times

and taking the cross-parameter interaction into account via
gradients at each point. By optimizing Hadoop parameters
using SPSA, we observed reduction in execution times
of benchmark applications on a realistic Hadoop cluster.
Further, we also showed how our method can be adapted
to tune parameters even when the cluster size changes
dynamically.

The method we developed can be enhanced to suit more
complex hadoop workload scenarios. An immediate area of
focus would be to adapt our method to work coherently with
Apache Spark [12]. One can also consider reducing the time
taken by an iteration in the SPSA learning phase.
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