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Abstract
Modern enterprise servers are increasingly embracing tiered

memory systems with a combination of low latency DRAMs

and large capacity but high latency non-volatile main memo-

ries (NVMMs) such as Intel’s Optane DC PMM. Prior works

have focused on the efficient placement and migration of

data on a tiered memory system, but have not studied the

optimal placement of page tables.

Explicit and efficient placement of page tables is crucial

for large memory footprint applications with high TLB miss

rates because they incur dramatically higher page walk la-

tency when page table pages are placed in NVMM. We show

that (i) page table pages can end up on NVMM even when

enough DRAM memory is available and (ii) page table pages

that spill over to NVMM due to DRAM memory pressure are

not migrated back later when memory is available in DRAM.

We study the performance impact of page table placement

in a tiered memory system and propose Radiant, an efficient

and transparent page table management technique that (i)

applies different placement policies for data and page table

pages, (ii) introduces a differentiating policy for page table

pages by placing a small but critical part of the page table in

DRAM, and (iii) dynamically and judiciously manages the

rest of the page table by transparently migrating the page

table pages between DRAM and NVMM. Our implementa-

tion on a real system equipped with Intel’s Optane NVMM

running Linux reduces the page table walk cycles by 12% and

total cycles by 20% on an average. This improves the runtime

by 20% on an average for a set of synthetic and real-world
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1 Introduction
The performance of the memory subsystem, both at the

software and the hardware layer, is getting increasingly im-

portant in the digital era due to the explosive growth in the

amount of data generated, processed and stored. This along

with DRAM scaling challenges [19, 22, 24] has led to the

exploration of several new hardware memory technologies

with diverse capabilities and capacities such as Intel’s Optane

PMM non-volatile main memory (NVMM) [20].
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Figure 1. Redis populating 1 TB of key-value pairs. The in-

flection at around 500 seconds is when Linux starts allocating

both data and page table pages on NVMM. In contrast, Radi-

ant efficiently manages the placement of page table pages

between DRAM and NVMM.

Modern servers typically use both DRAM and NVMMs to

exploit the low latency capabilities of DRAM and high ca-

pacities of NVMMs [16, 18, 39]. Such tiered memory systems
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bring in additional challenges in terms of managing or tier-

ing the placement and migration of data between DRAM and

NVMM. Several prior works [12, 21, 27, 35, 41] have studied

these challenges for data pages and proposed solutions to

identify and migrate hot data pages from NVMM to DRAM.

However, they have not studied this in the context of page

table pages. We argue that explicit and efficient management

of page table pages is crucial for system performance for the

following reasons.

❶ First, large memory footprint applications with ter-

abytes of memory incur frequent TLB misses [5, 32, 36] as

TLBs cover only a small portion of the total physical memory

(covering few MBs of physical memory with 4K page size

and covering up to 3GB with 2M pages). As a consequence,

a significant fraction of the memory accesses require a page

table walk.

❷ Second, the access latency of NVMMs is significantly

higher than DRAM. For example, on Intel’s Optane DC PMM,

the read latency is 3× higher than DRAM, mainly due to

the Optane’s longer media latency [42]. Consequently, a

hardware page table walk incurs higher walk latency when

a page table page is placed in NVMM. As a page table walk

requires up to 4 memory accesses upon a TLB miss (for

a 4-level page table), the page table walk latency can be

significantly higher in such cases which negatively impacts

the application’s performance (as shown in Figure 1). Radiant

efficiently places the page table pages between DRAM and

NVMM to reduce cycles spent in page table walks which in

turn improves the start-up time of Redis by 22% (Figure 1).

❸ Third, a typical page table occupies a small fraction of

memory. For example, the page table size of an application

with 2 TB memory footprint is around 4GB which is around

1% of DRAM on our evaluation system. Despite its relatively

small size, page table pages can end up on NVMM even when

there is enough free memory in DRAM. For instance, existing

operating systems do not differentiate between page table

and data page allocations; they apply the same allocation

policy for both of them [3, 12, 15]. Hence, when memory

interleave policy [15] is selected for data pages, page table

pages are also allocated in a round robin order on all nodes,

including NVMM nodes, even when DRAM has free memory.

❹ Lastly, operating systems do not support migration of

page table pages [3]. Once the page table pages are allocated,

they remain fixed for their lifetime; they are reclaimed only

when either the corresponding data pages are freed or the

process is terminated. In contrast, data pages enjoy the flexi-

bility of migration between DRAM and NVMM based on the

application’s memory access pattern.

A simple and straight forward approach to avoid page

table pages spilling to NVMM is to bind the page table to

DRAM. However, this approach results in pathological be-

havior where applications are killed by the out-of-memory

(OOM) handler even when significant amount of free mem-

ory is available in the system (details in §3.5). In addition, as

all the page table pages are not frequently accessed, placing

the complete page table on high-performance DRAM mem-

ory is not merited. Hence, we argue for judiciously managing

the placement of page table pages across DRAM and NVMM.

In this paper, we propose Radiant, an efficient and trans-

parent page table management technique for tiered memory

systems. Radiant differentiates between a data and a page ta-

ble page allocation by applying different placement policies

to them. It also considers the underlying memory hetero-

geneity while deciding on the placement of the page table

pages.

Additionally, Radiant employs the following techniques

for efficient page table management:

• Placement: introduces a differentiating placement

policy within the page table by placing a small but

critical part of the page table in DRAM. This differen-

tiating placement strategy is based on the observation

that the top three levels of a page table tree forms a

small portion of the page table but are frequently ac-

cessed during a page table walk (3 out of 4 accesses

during a page walk are from the higher levels of a page

table).

• Migration: efficiently identifies and transparently mi-

grates the last level page table pages between memory

tiers by employing a novel data-page-migration trig-

gered page table migration technique.

We implement Radiant in the Linux kernel and evaluate

the performance benefits on a real system equipped with

Intel’s Optane PMM persistent memory. Radiant reduces the

page table walk cycles by 12% and total cycles by 20% on an

average. This improves the runtime by 20% on an average

for a set of synthetic and real-world large memory footprint

applications when compared with the techniques employed

in the Linux kernel.

The main contributions of the paper are as follows:

• Based on extensive characterization and experimenta-

tion on a diverse set of workloads, we argue that differ-

ent placement and migration policies are required for

data and page table pages in tiered memory systems.

• To the best of our knowledge, this is the first work that

focuses on efficient placement and migration of page

tables on tiered memory systems.

• A differentiating placement policy within the page

table where a small but critical part of page table pages

are allocated on DRAMwhile the rest of the page table

pages are dynamically managed by migrating between

memory tiers.

The rest of the paper is organized as follows: we provide

the necessary background in Section 2 followed by the mo-

tivation for the paper in Section 3. We present our design

in Section 4 and implementation details in Section 5. We

evaluate the performance of Radiant in Section 6. We briefly
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discuss related works in Section 7 and finally, conclude in

Section 8.

2 Background
In this section, we cover the necessary background required

for the rest of the paper.

2.1 Optane Persistent Memory
Intel’s Optane Persistent Memory Module is a high-capacity

non-volatile main memory (NVMM) that is DDR4 socket

compatible and fits into standard DIMM slots [20]. Optane

can be used either as a high-capacity volatile main memory

(Memory Mode and Flat Mode) or as a persistent memory

(App Direct Mode) [33, 42]. Large memory footprint applica-

tions can exploit the additional memory capacity when Op-

tane is configured as a high-capacity volatile memory. For ex-

ample, Optane can seamlessly enable large-scale in-memory

graph analytics for graphs with billions of edges [16]

In this work, we use Optane as a high-capacity volatile

memory in Flat Mode (also referred to as DRAM-NVMM

hybrid mode [33]). The difference between Memory Mode

and Flat Mode is that in MemoryMode, Optane acts as a byte-

addressable volatile main memory while DRAM acts as a

cache; software has no control on the data placement. In Flat

Mode, both DRAM and Optane memory can be accessed as

a unified, but heterogeneous, byte-addressable memory. The

advantage with Flat Mode is that the software can control

and optimize the placement of data between low latency

DRAM and high latency Optane [18, 39].

We configure the system in FlatMode using ndctl tool [31]
and daxctl utility [13]. Step by step guide to configure Op-

tane as a hot-plugged main memory is available in Persistent

Memory Development Kit (PMDK) [34]. Once configured in

Flat Mode, Optane memory is reflected as “no-CPU” NUMA

nodes in the system as shown in Figure 2 (node 2 and node 3).

Support for Flat Mode is already part of the Linux kernel [17]

and hence, all the NUMA features (e.g., placement and bal-

ancing) in Linux are readily available for Optane-backed

NUMA nodes as well.

2.2 Page Tables
A page table maintains virtual address (VA) to physical ad-

dress (PA) translations and is organized as a multi-leveled

tree (x86_64 supports both 4-level and 5-level page tables;

we use 4-level page table for the discussions in the rest of the

paper
1
) where a page global directory (PGD or L1) is the root

of the tree. Each active entry in PGD points to a physical

page containing an array of page upper directory (PUD or

L2) entries. Similarly, each active entry in PUD points to a

physical page containing an array of page middle directory

(PMD or L3 ) entries. PMDs in turn point to a physical page

(PTE or L4) containing an array of page table entries. A PTE

1
A 4-level page table can map up to 256 TB of memory.
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entry contains the physical page address of the data page

corresponding to the virtual address as shown in Figure 3.

Upon a CPU TLB (Translation Lookaside Buffer) miss,

the hardware – being aware of the page table tree layout

– performs a page table walk to insert an entry in the TLB.

As TLBs cover only a small portion of the total physical

memory, most of the memory accesses by large memory

footprint workloads cause a TLB miss requiring a page table

walk.

In modern operating systems, page tables are dynamically

allocated: the root of the page table tree for a process is

allocated when the process is created. The physical pages to

store the intermediate and leaf-level pages of the page table

are allocated whenever the process page-faults on a valid

virtual address for the first time.

2.3 Userspace Data Page Allocation and Migration
Modern operating systems such as Linux provide a stable and

transparent technique for data page allocation on a multi-

socket system. Additionally, they also provide mature in-

terfaces or APIs for applications to explicitly control data

page allocation. By default, Linux employs a first-touch pol-

icy [3, 15], which allocates data pages on a local NUMA node
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Figure 4. TLB MPKI for applications with large memory

footprint. Benchmark details in Table 2.

and falls back to remote nodes when there is not enough

memory on the local node. Apart from this, an interleaved

allocation policy [15] is also available where the data pages

are allocated on all NUMA nodes in a round robin order. This

improves memory bandwidth utilization by distributing the

data pages across nodes and thus, avoids skewed allocation

to a set of nodes [15].

In a NUMA system, accessing data from a remote node

causes significant memory overheads incurring 2–4× higher

latency than accessing the data from a local node [3]. Many

solutions have been proposed over the last few decades to

mitigate such performance issues, including migration of the

data pages from the remote NUMA node to a local NUMA

node [12, 25, 44].

Operating systems such as Linux provides well defined

userspace APIs to trigger data page migrations between

NUMA nodes [26]. In addition, operating systems are ca-

pable of transparently migrating frequently accessed data

pages between NUMA nodes (e.g., AutoNUMA in Linux [10]).

However, it is important to note that the page migration sup-

port is only available for userspace data pages and not for

kernel pages.

3 Motivation
In this section, we present page table analysis for large mem-

ory footprint applications including the placement and dis-

tribution of page table pages, migration of page table pages

and performance impact of page table placement. System

and configuration details are in Table 1.

3.1 TLB Misses
Largememory footprint applications using terabytes of mem-

ory incur frequent TLB misses as TLBs cover only a small

portion of the total physical memory. Figure 4 shows the TLB

Misses-Per-Kilo-Instructions (MPKI) for applications with

large memory footprint (600GB to 1 TB). A higher MPKI

implies that a significant fraction of the memory accesses

incurs TLB misses, thus requiring page table walks.

It is important to note that MMU employs caching tech-

niques to cache the page table entries to reduce page walk

overheads. Additionally, page table entries are also cached in

system memory caches as MMU units access the page table
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Figure 5. Page table distribution for Memcached when

around 338GB of data has been populated with interleaved

allocation policy. Around 50% of page table pages end up in

NVMM even when 190GB of DRAM is free.

through the memory hierarchy. Despite MMU caching and

other TLB optimization techniques, we observe that large

memory footprint applications spend up to 68% of the total

execution cycles in page table walks. This observation is also

consistent with previous findings [3, 4, 6, 7, 28, 43].

3.2 Page Table Placement
Operating systems dynamically allocate pages for all the four

levels of page table on-demand, i.e., when the corresponding

virtual address page faults for the first time. However, the

NUMA node on which a page table page is allocated depends

on multiple factors including the socket on which the allo-

cating thread is running and the memory allocation policy of

the application [12, 15]. It is important to note that operating

systems employ the same allocation and placement policy

for both data and page table pages.

Figure 5 shows the placement of page table pages and data

pages when around 338GB of data has been populated in

Memcached using memory interleave policy (round-robin

allocation of data and page table pages across all NUMA

nodes). It can be observed that around 50% (0.32 GB) of page

table pages are allocated in Optane despite having around

190GB free memory in DRAM.

But in first-touch allocation policy, allocation of both data

and page table pages spills over to Optane only when DRAM

is almost full. Later when a part of DRAM memory is freed,

data pages are migrated from Optane to DRAM. However,

page table pages remain in Optane as they cannot be mi-

grated.

As a result, in one scenario, page table pages can be allo-

cated in NVMM even when enough free memory is available

in DRAM and in another scenario page table pages allocated
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Data spills
to Optane

Figure 6. Page walk latency when populating Redis with

1 TB of key-value pairs (we plot the first 1400 seconds, but

the trend continues). Page walk latency increases when the

page table page allocation spills to Optane.

on NVMM remains on NVMM even when enough memory

is freed on DRAM (Observation 1).

3.3 Page Walk Latency
The access latency of NVMMs are significantly higher than

DRAM mainly due to the longer media latency. Hence, a

hardware page table walk incurs higher walk latency when

a page table page is placed in NVMM. Additionally, a page

table walk requires up to 4 memory accesses to NVMMwhen

all the four levels of page table pages are allocated in NVMM.

This further increases the page walk latency. It has also been

observed that concurrent access to NVMMs, especially Op-

tane, from multiple CPUs in a multi-core system can degrade

performance due to limited internal buffers [42].

We measure the page walk latency when populating Redis

with 1 TB of key-value pairs using the default first-touch pol-

icy. Page walk latency increases significantly (Figure 6) when

the page table page allocation spills to NVMM (Observation
2).

3.4 Migration Support
Techniques employed by operating systems and userspace

applications to identify and migrate frequently accessed

pages from NVMM to DRAM to improve application perfor-

mance are restricted to data pages and cannot be directly

extended to migrate page table pages. Because, the design of

most modern operating systems does not allow migration of

kernel data (which includes page tables). As a consequence,

once page table pages are allocated, they remain fixed for

their lifetime; they are reclaimed only when either the cor-

responding data pages are freed or the process is terminated.

As a result, page table pages that are allocated on NVMM

remain in NVMM.

Furthermore, enhancing the kernel to enable page table

page migration is a non-trivial operation as it requires fixing

the page table tree structure to ensure that the virtual to

physical address mappings are intact. In addition, page table

page migration on a multi-core system requires careful han-

dling of race conditions. For example, the page table page
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Figure 7. L4 page table page allocation latency in case of

the default Linux kernel and when the entire page table is

binded to DRAM.

under migration can either be accessed by hardware during

a page walk or can be accessed/modified by other CPUs to

serve a page fault.

3.5 Page Table Binding
A simple and straight forward approach to avoid page table

pages spilling to NVMM is to bind the page table to DRAM.

Even though this looks like a viable option, it results in

pathological behaviours as we demonstrate by evaluating

the Linux kernel patches [40] that propose to bind the page

table to DRAM.
2

We start populatingMemcached in-memory database with

the default first-touch allocation policy on a freshly booted

system. Initially, all data and page table page allocations for

the in-memory database are directed to DRAM (as per first-

touch policy) resulting in DRAM nodes filling up before

Optane nodes.

Once DRAM is almost full, all new data page allocations

are directed to Optane nodes, while the page table pages

are still directed to DRAM due to DRAM binding. Forcing

the page table page allocations on almost-full DRAM nodes

results in higher allocation latencies (Figure 7) as the buddy

allocator falls back to slowpath function that performs addi-

tional work of compaction and page reclamation.

Interestingly, reclaimed free pages in DRAM are used to

allocate both data and page table pages as per first-touch

policy. This quickly fills up DRAM triggering another round

of reclamation for a page table page allocation request. As

DRAM is just 19% of the total memory on our system, the

cycle of reclaiming DRAM memory and filling it up again (a

thrashing kind of situation) starts early during the initializa-

tion of in-memory database and continues as we populate

key-value pairs in the database.

2
These patches are not included in the Linux kernel; Linux kernel v5.6 still

allows allocation of page table pages on Optane NUMA nodes.
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However, after a while, the Linux kernel fails to reclaim

enough DRAM pages to serve page table page allocation re-

quests and as a result triggers the out-of-memory (OOM) han-

dler. OOM handler kills the Memcached server even when

700GB of free memory is available in Optane NUMA nodes.

Out-of-memory issues can be mitigated to some extent

by employing aggressive page reclamation heuristics, but

mitigating high page table allocation latencies and thrashing

issues require complex changes to the kernel. We address

these challenges fundamentally by efficient allocation and

placement of page table pages across memory tiers.

3.6 Summary
To summarize, we argue that with the growing relevance of

large tiered memory systems, it is important to explore effi-

cient page table allocation and placement technique across

memory tiers, which has received least attention till now.

4 Radiant Design
We propose an efficient and transparent page table manage-

ment technique to reduce page walk overheads on tiered

memory systems. In this section, we present the design of

Radiant.

4.1 Design Considerations
Differentiate between data and page table pages: Large
memory footprint applications with terabytes of memory

incur frequent TLB misses. The performance of such appli-

cations is sensitive to the placement of page table pages in

a tiered memory system. Hence, it is necessary to consider

different allocation and placement policies for data and page

table pages.

Differentiate betweenNVMMandDRAMmemory:Care-
fully consider the underlying memory heterogeneity (e.g.,

capacity, latency) while deciding on the placement of page

table pages.

We propose the following two techniques that incorporate

the above design considerations along with the observations

made during page table analysis in §3.

4.2 Binding Critical Page Table Pages to DRAM
The read latency on NVMM is 3× higher than DRAMmainly

due to the longer media latency. As a page table walk requires

4 memory accesses, the page table walk latency is signifi-

cantly higher when all the four levels of the page table pages

are allocated on NVMM. Even though a typical page table

for a large memory footprint application can occupy a small

fraction of DRAM, binding the entire page table to DRAM

can result in pathological behaviours as demonstrated in

§3.5.

We observe that a majority of the page table memory is

consumed by leaf level or L4 page table pages; L1, L2 and

L3 page table pages together consume insignificant amount

of memory. For example, an application with around 2 TB

memory footprint requires around 4GBmemory for L4 pages

and collectively requires around 7.62MB for L1, L2 and L3

page table pages (size estimation in Figure 3). We exploit this

insight to significantly reduce the amount of time spent on

page table walks.

Our placement strategy is to dynamically allocate and

bind L1, L2, and L3 page table pages in DRAM. With such a

placement technique, during a 4-level page walk, 3 out of 4

memory accesses are guaranteed from low latency DRAM

thus drastically reducing the page walk cycles. It is important

to note that we achieve this by strategically placing less than

0.18% of page table pages in DRAM.

Such a policy not only improves the application execu-

tion time but also improves startup or initialization time

for large memory footprint applications. For example, when

populating initial key-values in an in-memory database, ini-

tializing a large graph, or restoring a VM snapshot, a large

portion of L1, L2, and L3 page table pages are initialized and

accessed (e.g., zeroing a newly allocated page table page).

Hence, placing them in DRAM reduces the startup time of

applications.

Our strategy, as opposed to placing the entire page table

in DRAM [40] has several advantages. ❶ First, we drasti-

cally minimize the amount of page table pages that requires

binding to DRAM. For example, we bind only 7.62MB for

a 2 TB workload which is less than 0.0019% of DRAM on

our evaluation system. In contrast binding the entire page

table requires 4GB of DRAM. ❷ Second, by using less than

0.0019% of DRAM for binding we guarantee 75% of page ta-

ble walks from DRAM. ❸ Finally, even under extreme mem-

ory pressure operating systems can allocate L1, L2 and L3

page table pages in DRAM by reclaiming a small amount of

DRAMmemory. While binding the entire page table requires

reclaiming few GBs of DRAM memory which can trigger

out-of-memory handler.

4.3 Page Table Migration
We allow allocation of L4 page table pages, which constitutes

the majority of the page table pages, on both DRAM and

NVMM. Further, we use data-page-migration triggered page

table migration technique to efficiently identify and migrate

L4 pages between DRAM and NVMM. With this technique

we derive hot/cold page table pages from the hotness of

the data pages, thus eliminating explicit page table tracking

overheads.

The rationale behind such an approach is that a data page

migration provides crucial hint on the placement of the cor-

responding L4 page table page. For example, migration of a

hot data page from NVMM to DRAM hints that the corre-

sponding L4 page table page, if present on NVMM, should

also be migrated. Because, for a large memory footprint ap-

plication with terabytes of memory even a hot data page

incurs frequent TLB misses (as the amount of hot data far
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more exceeds the TLB reach) resulting in frequent accesses

to L4 page by the hardware page walker. Therefore, when a

data page is migrated between memory tiers we trigger the

migration of the corresponding L4 page table page.

Operating systems such as Linux provides a well defined

userspace API [26] to trigger data page migrations to enable

novel userspace techniques to efficiently identify andmigrate

data pages between memory tier. For example, identifying

and migrating hot and cold data pages between memory tiers

or speculatively pre-migrating a set of data pages between

DRAM and NVMM based on the application’s memory ac-

cess patterns. In addition, operating systems are capable of

transparently migrating frequently accessed data pages be-

tween NUMA nodes (e.g., AutoNUMA in Linux). We exploit

such existing data migration techniques to trigger an L4 page

table page migration between DRAM and NVMM.

We migrate an L4 page from NVMM to DRAM upon the

migration of the corresponding data page, however, we mi-

grate an L4 page from DRAM to NVMM only when the last

data page it is pointing to is migrated to NVMM. This is to

ensure that an L4 page is in DRAM if any data page it is

pointing to is in DRAM.

4.4 Page Table Migration Details
As mentioned before, the core design of many operating sys-

tems does not allow migration of kernel data which includes

page table pages. We exploit the page table tree structure to

enable migration without changing the core kernel design.

Algorithm 1 and Figure 8 show the steps involved in mi-

grating an L4 page table page. Whenever a data page mi-

gration is initiated either by a userspace program or by the

kernel (e.g., AutoNUMA), we trigger the migration of the

corresponding page table page. The L4 page migration is

initiated after the corresponding data page migration is suc-

cessfully completed (Line 4).

Algorithm 1 Algorithm to migrate an L4 page

1: procedure Migrate_Data(𝑑𝑎𝑡𝑎_𝑝𝑎𝑔𝑒 , 𝑑𝑒𝑠𝑡_𝑛𝑜𝑑𝑒)

2: 𝑑𝑎𝑡𝑎_𝑝𝑎𝑔𝑒𝑛𝑒𝑤 ← alloc_page(𝑑𝑒𝑠𝑡_𝑛𝑜𝑑𝑒)
3: rc←migrate_data_page(𝑑𝑎𝑡𝑎_𝑝𝑎𝑔𝑒 , 𝑑𝑎𝑡𝑎_𝑝𝑎𝑔𝑒𝑛𝑒𝑤 ,

𝑑𝑒𝑠𝑡_𝑛𝑜𝑑𝑒)

4: if rc==SUCCESS then
5: migrate_L4(𝑑𝑎𝑡𝑎_𝑝𝑎𝑔𝑒𝑛𝑒𝑤 , 𝑑𝑒𝑠𝑡_𝑛𝑜𝑑𝑒) ⊲Migrate L4 page
6: end if
7: end procedure
8:

9: procedure migrate_l4(𝑑𝑎𝑡𝑎_𝑝𝑎𝑔𝑒𝑛𝑒𝑤 , 𝑑𝑒𝑠𝑡_𝑛𝑜𝑑𝑒)

10: /* Walk the page table */
11: (𝐿4, 𝐿3) ← get_pt_entries(𝑑𝑎𝑡𝑎_𝑝𝑎𝑔𝑒𝑛𝑒𝑤)
12: 𝐿4_𝑛𝑜𝑑𝑒 ← page_node(𝐿4) ⊲Get L4’s node
13: if 𝐿4_𝑛𝑜𝑑𝑒 == 𝑑𝑒𝑠𝑡_𝑛𝑜𝑑𝑒 then
14: return ⊲Already in destination
15: else if 𝐿4_𝑛𝑜𝑑𝑒 in DRAM and 𝑑𝑒𝑠𝑡_𝑛𝑜𝑑𝑒 in DRAM then
16: return ⊲Already in DRAM (similarly for NVMM)
17: else if 𝑑𝑒𝑠𝑡_𝑛𝑜𝑑𝑒 in NVMM then
18: if any data page pointed by 𝐿4 in DRAM then
19: return ⊲L4 pointing to a page in DRAM
20: end if
21: end if
22: if lock(𝐿4 and 𝐿3) then ⊲Lock L4 and L3 pages
23: /*Allocate a L4 page on the destination NUMA node*/
24: 𝐿4𝑛𝑒𝑤 ← alloc_page(dest_node)
25: tlb_flush() ⊲Invalidate 𝐿4𝑜𝑙𝑑 mappings
26: memcpy(𝐿4𝑛𝑒𝑤 , 𝐿4, 4096) ⊲Copy the L4 page
27: update_L3(𝐿4𝑛𝑒𝑤 ) ⊲Sync. point
28: unlock(𝐿3 and 𝐿4) ⊲Unlock the L3 and L4 pages
29: end if
30: end procedure

To migrate a page table page we first fetch L4 and L3

pages corresponding to the new data page (𝑑𝑎𝑡𝑎_𝑝𝑎𝑔𝑒𝑛𝑒𝑤)

by performing a software page table walk (Line 11). Once we

have L4 page, we get its NUMA node. We skip the migration

if L4 page is already in the destination NUMA node (Line

14) or if the migration is from one DRAM (or NVMM) node

to another DRAM (or NVMM) node (Line 16). We also skip

the migration of L4 page from DRAM to NVMM if any data

page pointed by L4 is in DRAM (Line 19).

On meeting all the necessary conditions, we start the mi-

gration by locking L4 and L3 page table pages. Locking is re-

quired to synchronize between parallel data or L4 migrations,

which is common in multi-core systems. Now we allocate a

new L4 page (𝐿4𝑛𝑒𝑤 ) on the destination NUMA node. If suc-

cessful, we flush the TLB and MMU caches to invalidate any

entries pointing to old L4 page and then copy the contents

from old L4 page to 𝐿4𝑛𝑒𝑤 and update L3 to point to 𝐿4𝑛𝑒𝑤
(Line 27).

TLB flushing forces a hardware page walk on CPUs that

concurrently attempts to access the old L4 page under migra-

tion, while an invalid old L4 entry triggers a page fault. The

operating system’s page fault handler being aware of the

ongoing L4 migration waits for the migration to complete

before inserting the updated mapping.
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4.4.1 Page Table Consistency. In a multi-core system,

multiple CPUs can concurrently try to access an L4 page

under migration in the software page fault handler. Further-

more, similar to a data page migration, an L4 page migration

can also be triggered simultaneously, thus, requiring explicit

synchronization during a page table migration. We also need

to ensure that the hardware page table walker sees a consis-

tent state of the page table at all the times.

Even though Algorithm 1 provides generic steps to mi-

grate an L4 page, the actual implementation and sequence of

steps (e.g., when to flush TLB entries) may vary depending

on the underlying architecture and the operating system.

5 Implementation
In this section, we explain the implementation details of

Radiant for x86_64 architecture in the Linux kernel. We use

the Linux kernel’s terminology to refer to different levels of

a page table; L1 is referred as PGD, L2 as PUD, L3 as PMD,

and L4 as PTE.

As explained before, the default kernel only migrates data

pages during amigration. Enabling PTEmigration on amulti-

core system is not trivial; a simple pointer flip at the PMD-

level and freeing of the old PTE page is not enough. We list

down a few challenges in implementing PTE migrations on

a production-class operating system such as Linux:

❶ Multiple CPUs in a multi-core system, upon a TLB miss,

can concurrently perform page walk by accessing the page

table pages using the physical addresses. Hence, we need

to ensure that the hardware always sees a consistent page

table.

❷ As a PTE page points to 512 data pages, it is possible

to have multiple concurrent migrations of these data pages

to different NUMA nodes. Every such instance of successful

data migration triggers a PTE page migration. We need to

ensure that the page table is consistent without causing a

significant performance overhead.

In the subsequent sections, we explain implementation

details including challenges and solutions.

5.1 Binding the High-Level Page Table Pages
The default Linux kernel allows us to specify memory poli-

cies for applications to bind to specific NUMA nodes. How-

ever, Linux does not support binding page table pages inde-

pendent of the data pages.Wemodify the page table page allo-

cation functions in the kernel, pgd_alloc(), pud_alloc(),
and pmd_alloc(), to add support to bind PGD, PUD, and

PMD pages in DRAM.

We extend the numactl utility [8] to enable the processes

for which the high-level pages of a page table should be

placed in DRAM. Placement of high-level page table pages

is independent of data page placement for processes enabled

with numactl binding. Rest of the processes in the system

follow the data page placement policy for page table pages.

5.2 PTE Migrations
The Linux kernel ensures that a data page under migration

is completely isolated from the rest of the system. Any page

fault on this page waits either on the locked PTE or the

locked data page until the migration is complete.

As shown in Figure 8, we first try to acquire the PMD lock.

If successful, a new PTE page is allocated on the destination

NUMA node using alloc_pages_node() function. Then,

we copy the page content from the old PTE page to the new

PTE page and fix the page table (update the PMD entry to

point to this new PTE).

We also flush the TLB entries and MMU cache to clear

the old PMD to PTE mappings. But, the PTE to data page

mappings are still valid as we copy the contents of old PTE

page to the new PTE page (see Figure 8). After the PMD to

new PTE page mapping is updated in the page table, any

TLB miss will use the new PTE page instead of the old PTE

page; the hardware need not wait for the release of the lock

on the old PTE page.

5.3 Performance Implications
The page table of a process has three types of locks; a page

table lock, a per-PMD page lock, and a per-PTE page lock

(see Figure 3). The per-PTE (or per-PMD) page lock allows for

parallel updates across different PTE (or PMD) pages without

locking the whole page table. This significantly improves the

performance of operations on the last level (or PMD-level)

of the page table in a multi-core system [11, 14].

As explained in Section 4.4, we obtain the PMD lock prior

to updating the PMD entries. This is required to avoid a

race condition where a parallel migration on another CPU

updates the PMD entry. However, locking the PMD serializes

the migration of data pages mapped within the PMDwith the

migration of the corresponding PTE pages. This delays the

completion of a data page migration, which in turn increases

the page fault latency as the Linux kernel’s fault handler has

to wait for the completion of the migration. To mitigate the

latency overheads, we try to lock the PMD using try_lock()
prior to migrating a PTE page. If we cannot get the lock, we

skip the PTE pagemigration. As a PTE page points to 512 data

pages, it is possible that we will get many more opportunities

to migrate the PTE page.

6 Evaluation
In this section, we evaluate the performance of Radiant on a

suite of real-world applications and synthetic benchmarks,

and compare it with the Linux kernel’s memory allocation

policies and management techniques. Table 1 provides de-

tails on the experiment setup. Support for transparent huge

page (THP) is disabled unless otherwise stated. We use an un-

modified Linux kernel 5.6 for all our baseline evaluations and

enhance it to implement Radiant. Table 2 lists the workloads

and Table 3 lists the conventions used for the evaluation.
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Table 1. System configuration

Hardware
CPUs (2×24×2=96) Memory (2 TB)

Model Intel-Xeon Gold 6252N DRAM 384GB

CPUs 2 Socket, 24 Cores, 2 HT Optane 1.6 TB (Flat Mode)

System settings
Linux Kernel: 5.6 DVFS: Performance ASLR: Off

NUMA: 4 Nodes
Node 0/Node 1 Node 2/Node 3

CPUs 48 CPUs 0

Memory DRAM 192GB Memory Optane 800GB

Table 2. Workloads used to evaluate the performance of Ra-

diant. RSS (resident set size) and PT (page table) size shown.

Name Description RSS (PT

size)

Memcached [29] A commercial in-memory object

caching system. Setting: YCSB [9]:

2M objects. Read using a Zipfian distribu-

tion [30].

1 TB

(1.9 GB)

Redis [23] A commercial in-memory key-

value store.

Setting: Same as Memcached.

1 TB

(1.9 GB)

BTree [1] A benchmark for index look-ups

used in database and other large

applications.

Setting: 7.3 B elements with 40M look-ups.

666GB

(1.2 GB)

HashJoin [2] A benchmark for hash-table

probing used in database appli-

cations and other large memory

footprint applications.

Setting: 6 B elements.

838GB

(1.6 GB)

XSBench [38] A key computational kernel of

the Monte Carlo neutron trans-

port algorithm [38]

Setting: 2M grid points.

1 TB

(1.9 GB)

BFS [37] A graph traversal algorithm.

Setting: rMat order 30 graph [37]

600GB

(1.1 GB)

Table 3. Conventions used in the paper for discussion

Radiant techniques
BHi Bind high-level (PGD, PUD and PMD) page table pages in

DRAM

Mig Enable migration of last-level (PTE) page table pages

BHi+Mig Enabling binding of high-level page table pages along with

migration for the last-level of a page table.

6.1 Evaluation Strategy
We compare the performance of Radiant techniques with

two memory allocation policies in the default Linux kernel.

❶ First is the default first-touch policy [3, 15]. In this case,

the NUMA node for the page table pages is selected based

on the data page allocation policy, i.e., a page table page is

allocated on the same NUMA node where the data page is

allocated. This policy allocates a data page on a NUMA node

that is close to the CPU where the application is running –

a local NUMA node [15]. However, the allocations can spill

over to remote NUMA nodes when an allocation request

cannot be served from the local NUMA node.

❷ Second is the interleaved policy where the Linux kernel

distributes the data uniformly across all the NUMAnodes in a

round-robin order to improve memory bandwidth utilization.

To enable PTE migrations, we rely on the Linux kernel’s

memory management technique called AutoNUMA to get

data page migration hints. By default, AutoNUMA dynami-

cally migrates data pages only (not page table pages) across

NUMA nodes to improve local NUMA accesses from a CPU.

We run the experiments with AutoNUMA enabled unless

otherwise mentioned.

We are unable to evaluate page table binding technique [40]

because of out-of-memory issues mentioned in §3.5. For

example, we are unable to fully populate the Memcached

in-memory database as the server is killed due to such issues.

Our evaluation strategy is as follows:

• Full-system run: Run the workloads with full sys-

tem capacity utilizing maximum possible resources,

which reflects a typical real-world data center scenario.

We compare the performance of Radiant (BHi and

BHi+Mig ) with Linux kernel’s first-touch policy.

• Multi-tenant scenario: Evaluate the performance

benefits of Radiant in a multi-tenant environment (a

typical cloud setting), where different applications can

start and exit at any point in time.

• Interleaved setting: Compare the performance of Ra-

diant (BHi) with the interleaved memory allocation

policy, with AutoNUMA disabled. We show that dif-

ferentiating between allocation of data and page table

pages improves the performance.

• Start up time: At the startup of a large memory foot-

print application, a significant portion of high-level

(PGD, PUD, and PMD) page table pages are initialized.

We evaluate the performance benefits of BHi in such

scenarios.

• Huge page impact: Evaluate the performance bene-

fits of Radiant when huge pages are enabled.

6.2 Full-System Run
We evaluate the performance of workloads with the mem-

ory footprint size as specified in Table 2 utilizing maximum

possible system resources. We compare the performance of

the Linux kernel’s first-touch policy (baseline) with Radiant

(BHi and BHi+Mig ) techniques (see Figure 9).

BHi: The high-level page table pages are frequently accessed
during a page table walk. Binding them to DRAM ensures

a low-latency access during a page table walk and reduces

the walk cycles by up to 17.31%. Placement on DRAM also

reduces the stall cycles by up to 19.18%. This translates into
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Figure 9. Performance comparison of first-touch policy with Radiant, for the run phase (data loading phase is not shown).

Table 4. Radiant performance improvement summary

(geometric-mean across all the workloads). A higher value

indicates better performance improvement with Radiant.

Run Time Cycles Walk Cycles Stall Cycles

Full system run: First-touch policy

BHi 2.79% 3.32% 4.56% 5.68%

BHi+Mig 20.39% 20.71% 12.38% 20.9%

Multi-tenant scenario: First-touch policy

BHi+Mig 17.95% 19.85% 32.62% 23.25%

Interleaved: AutoNUMA disabled, Interleaved policy

BHi 10.41% 10.02% 10.53% 9.01%

Huge page impact: AutoNUMA disabled with THP enabled

BHi 52.96% 51.82% 36.37% 38.63%

Start up time improvement: AutoNUMA disabled (Redis)

Time Avg Lat. Max Lat. 95th%ile Lat. 99th%ile Lat.

BHi 22.81% 22.82% 17.35% 25.56% 20.70%

a reduction of total cycles by up to 11.43% and a run-time

improvement of up to 9.08% (see Table 4).

BHi+Mig : With PTE migrations enabled, the percentage

of page table pages in DRAM increases (e.g., from 19.6% to

34.0% for Redis). This reduces the walk cycles by up to 28.06%

and the stall cycles by up to 59.57%. This causes a reduction

in the total cycles by up to 61.19% and improves the run-time

by up to 60.88% (see Figure 9).

6.3 Multi-Tenant Scenario
In a typical cloud setting, where tiered memory is likely to

be deployed, many applications co-exits in parallel in a given

period of time. Here, different applications may start or exit

at any point in time.

An application (V ) started when DRAM is almost full is

allocated memory (data and page table pages) on NVMM. At

a later point in time when other applications using DRAM

exit, DRAM becomes free resulting in the migration of the

data pages of V from NVMM to DRAM. However, with the

default Linux kernel, the page table pages are not migrated

from NVMM, incurring performance overheads even in spite

of free memory in DRAM. To capture the benefits of Radiant

in such scenarios, we setup a cloud-like environment and

compare the performance of Radiant with the default Linux

kernel.

To setup the environment, we first launch applications

that fill up DRAM. These applications also frequently access

the data pages in DRAM. Then we launch our benchmark

application. As DRAM memory is full, all the benchmark

application’s memory is allocated on NVMM. After this, we

terminate the applications that filled up DRAM resulting

in freeing of significant portion of DRAM memory. This

triggers a migration of the benchmark application’s data

pages from NVMM to DRAM.

For this experiment, the system configurations remain the

same as full-system run. However, we run with a smaller

input size (see Figure 10). BHi+Mig reduces the walk cycles

by up to 61.34% and stall cycles by up to 54.88%. This reduces
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Figure 10. Performance comparison of Radiant (Mig) in a multi-tenant environment with AutoNUMA (baseline).
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Table 5. Number of data page and PTE migrations in multi-

tenant environment.

PTE migrations
Workload Data page

migrations

Successful

migration

Already in

destination

Within

DRAM

Memcached 66,644,738 50,601 39,272,431 26,763,450

Redis 33,315,590 69,731 27,461,927 5,783,941

BTree 11,820,636 17,061 7,791,351 4,012,020

HashJoin 1,945,151 50,209 1,867,027 27,915

XSBench 371,977 574 285,933 85,470

BFS 6,967,564 20,957 6,942,269 4,338
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Figure 11. Performance evaluation of BHi for Memcached

in an interleaved setting with AutoNUMA disabled.

the total cycles by up to 50.75% and improves the run-time by

up to 50.77% (see Figure 10). Table 5 shows the number of data

page migrations triggered and the number of successful PTE

migrations. We also show the reason for not migrating a PTE

page (a PTE page is already in DRAM or in the destination

NUMA node). As a PTE page points to 512 data pages, the

first data page that is migrated to DRAM triggers a PTE

page migration; for the rest 511 data page migrations, PTE

migration is not required as it is already in DRAM.

6.4 Interleaved vs. Radiant
Interleaved memory allocation policy allocates the page ta-

ble pages and the data pages on DRAM and NVMM in a

round robin manner. Radiant still follows the interleave pol-

icy for data pages, but binds the high-level page table pages

to DRAM (BHi). We compare the performance of BHi with

the default kernel allocation (Figure 11). As AutoNUMA is

disabled for this experiment, page table pages are not mi-

grated and hence, we do not report BHi+Mig statistics. We

can clearly observe that having a different placement and

allocation policy for data and page table pages is beneficial.

Binding the high-level pages in DRAM reduces the walk

cycles up to 49.48% and stall cycles by up to 43.42%. This

reduces the total cycles by up to 50.51% and improves the

run-time by up to 51.75%. It can be further observed from

Figure 12 that page walk latency decreases by 23% when

we bind the high-level page table pages in DRAM as the

interleaved allocation policy spreads the high-level page

table across the DRAM and NVMM nodes.

Baseline

B-Hi

Improvement
of 23%

Figure 12. Improvement in the page walk latency with BHi

for the interleaved policy (Memcached, RSS 1ṪB, 100% read).

Baseline is interleaved memory allocation policy with Au-

toNUMA disabled.
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Figure 13. Performance of BHi with THP enabled. Baseline

is AutoNUMA disabled with 4K pages.

6.5 Improving Application Start Up Time
During an application start up there are many data page

faults that requires a page table walk. By placing the high-

level of a page table pages in DRAM, we reduce the cycles

spent on page table walks. While inserting 1 TB of data in

Redis, we reduce the total page walk cycles by ≈ 9%. This

results in a 21% reduction in total stalls cycles, that corre-

sponds to an improvement of 22% in total start up time, when

compared with default first-touch policy (see Figure 1 and

Table 4).

6.6 Huge Page Impact
We evaluate the performance of Radiant when transparent

huge page (THP) support is enabled.

Figure 13 shows that BHi improves performance when

THP is enabled. BHi binds PGD, PUD, and PMD levels of the

page table to DRAM. For a huge page as a PMD page is the

last or leaf-level page (no PTE page), BHi is effectively bind-

ing the entire page table resulting in performance improve-

ment. However, BHi+Mig does not improve performance as

there are no PTE-level pages to migrate.

6.7 Discussions
In a modern out-of-order CPU, a page table walk performed

by the PageMiss Handler (PMH) in the hardware can overlap

with other work [3]. Hence, a reduction in page table walk
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Figure 14. Performance statistics from the perf tool for

BHi+Mig in full-system run for BFS (normalized to default

first-touch policy baseline).

cycles need not always result in the reduction in total execu-

tion cycles. On the other hand, we see a reduction in total

execution cycles even when there is no significant reduction

in walk cycles. We use the hardware performance counters

to reason and understand the impact of page walk cycles on

total execution cycles.

Figure 14 shows the counters for BFS from the full-system

run (§6.2). Here, the instructions executed, cache misses,

and data TLB loads/load-misses remain the same, as ex-

pected. However, we can observe a significant reduction

in walk_active and walk_pending cycles (i.e., cycles when
PMH is performing a page walk). This contributes to the

reduction in stall cycles stalls_mem_any, (execution stalls

either due to an outstanding load/store or due to an address

translation). It can be thus observed that reduction in to-

tal execution cycles is proportional to reduction in the stall

cycles.

However, for few benchmarks, a reduction in the walk

cycles does not result in a proportional reduction in the stall

cycles. Because most of the stalls are due to an outstanding

load/store and not due to address translation (Redis and

BTree in Figure 10c). As a result we do not see significant

improvement in total execution cycles.

7 Related Works
7.1 Mitosis
Mitosis [3] proposes to reduce the page table overheads in

a multi-socket NUMA systems by transparently replicating

the page table pages on all the NUMA nodes. Mitosis shows

that accessing page table pages from a remote NUMA node

increases the page-fault latency. The basic assumption is

that all sockets are equipped with low-latency DRAM mem-

ory. However, in a tiered-memory system with high latency

NVMMs, replicating page table pages has several disadvan-

tages. First, replicating a page table and ensuring its consis-

tency on NVMMs incurs high overheads. Second, accesses

to a page table on local NVMM-backed NUMA nodes are

Table 6. Comparison of Radiant with Mitosis [3]

Radiant Mitosis

Tiered Memory Support Yes No

Migration Support Direct Via replication

Migration b/w DRAM and

NVMM

Yes No

Migration Granularity L4 pages only Full page table

Page table DRAM binding L1, L2, L3 None

Replication No Yes

Page table sync. overheads No Yes

Hot L4 page identification Yes No

costly due to 3× higher access latency. Hence, replication of

page table may not be helpful for large memory footprint

applications running on tiered memory systems.

Even though Mitosis supports migration of page table

pages, it is achieved via replication, i.e., replicate the page

table on the destination node and then lazily free the replica

on the local node. Radiant binds critical parts of the page

table in DRAM and dynamically migrates the L4 pages pages

between DRAM and NVMM; thus avoiding a full page table

migration (Table 6).

Finally, Radiant employs the novel data-page-migration

triggered page table page migration to identify and migrate

page table pages betweenDRAMandNVMM.Mitosis neither

identifies nor migrates relevant page table pages.

7.2 Linux Kernel Community
Linux kernel patches [40] posted in the Linux Kernel Mailing

List (LKML) propose to bind all the page table pages in DRAM

to avoid accessing it from NVMM (this patch is not a part

of the Linux kernel). However, such an approach results in

pathological behaviours mentioned in §3.5. Radiant proposes

to bind only 0.18% of the page table pages in DRAM (i.e., L1,

L2 and L3 pages) and dynamically migrates L4 pages between

DRAM and NVMM.

8 Conclusion
In this paper, we show that explicit and efficient manage-

ment of page table on tiered memory systems with terabytes

of memory is important. We study the performance impact

of page table placement and argue that different placement

and migration policies are required for data and page table

pages. We demonstrate that binding a small but critical page

table pages to DRAM and dynamically managing the rest of

the page table pages by enabling migration results in signifi-

cant performance improvement on systems with terabytes

of NVMM memory.
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