
SecureFS: A Secure File System for
Intel SGX

Sandeep Kumar and Smruti R. Sarangi

Indian Institute of Technology Delhi, India

The 24th International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2021)

Donostia / San Sebastian, Spain on October 6-8, 2021.

Outline

2

Outline

Introduction

Problem
Statement

Related
Work

Design
Evaluation &
Conclusion

2

Introduction
What is SGX, and why should I care?

3

Intel Secure Guard eXtension

4

Intel Secure Guard eXtension

4

Intel Secure Guard eXtension

4

Intel Secure Guard eXtension

Secure Encrypted

Memory

No-Snooping or
tampering

Hardware-
managed

4

Intel SGX: Limitations

5

Intel SGX: Limitations

5

Limited amount of
trusted memory.

• 128 MB, 92 MB
usable.

SGX transparently
handles it.

• Faults are costly.

Intel SGX:
Limitations

6

Intel SGX:
Limitations

6

Intel SGX:
Limitations

Operating System is NOT
trusted.

No direct system calls in
SGX.

No secure file system
access.

6

Problem Statement

7

Problem Statement

8

Problem Statement

Bring storage in the
trusted domain.

8

Problem Statement

Bring storage in the
trusted domain.

A fast and
secure file
system that is
immune to
replay attacks.

8

Related Work
[1]: Judicael B. Djoko, Jack Lange, and Adam J. Lee. 2019. NeXUS: Practical and Secure Access Control on Untrusted Storage Platforms using
Client-Side SGX. DSN, 2019

[2]: Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical Library OS for Unmodified Applications on SGX. In USENIX
Annual Technical Conference

[3]: Intel: https://software.intel.com/content/www/us/en/develop/articles/overview-of-intel-protected-file-system-library-using-software-
guard-extensions.html

9

Where to store the data?

13

Where to store the data?

Encrypted file systems

• Data is encrypted prior to sending
it to the disk.

In-Memory file systems

• An in-memory file system is
maintained.

Hybrid file systems

• A combination of an encrypted
file system and an in-memory file
system

13

Hybrid design

19

F1 F2 F3 F4

𝐻 = 𝐻𝑎𝑠ℎ(𝐷)

𝐾𝑒𝑦(𝑘) ← 𝑅𝑎𝑛𝑑𝑜𝑚()

𝐸 = 𝐸𝑛𝑐𝑘 𝐷|𝐻

File “F” is split
into equal size

“chunks”.

Hybrid design

19

F1 F2 F3 F4

𝐻 = 𝐻𝑎𝑠ℎ(𝐷)

𝐾𝑒𝑦(𝑘) ← 𝑅𝑎𝑛𝑑𝑜𝑚()

𝐸 = 𝐸𝑛𝑐𝑘 𝐷|𝐻

File “F” is split
into equal size

“chunks”.

Hybrid design

19

F1 F2 F3 F4

𝐻 = 𝐻𝑎𝑠ℎ(𝐷)

𝐾𝑒𝑦(𝑘) ← 𝑅𝑎𝑛𝑑𝑜𝑚()

𝐸 = 𝐸𝑛𝑐𝑘 𝐷|𝐻

File “F” is split
into equal size

“chunks”.

Hybrid design

19

F1 F2 F3 F4

𝐻 = 𝐻𝑎𝑠ℎ(𝐷)

𝐾𝑒𝑦(𝑘) ← 𝑅𝑎𝑛𝑑𝑜𝑚()

𝐸 = 𝐸𝑛𝑐𝑘 𝐷|𝐻

File “F” is split
into equal size

“chunks”.

Hybrid design

19

F1 F2 F3 F4

𝐻 = 𝐻𝑎𝑠ℎ(𝐷)

𝐾𝑒𝑦(𝑘) ← 𝑅𝑎𝑛𝑑𝑜𝑚()

𝐸 = 𝐸𝑛𝑐𝑘 𝐷|𝐻

File “F” is split
into equal size

“chunks”.

Hybrid design

19

F1 F2 F3 F4

𝐻 = 𝐻𝑎𝑠ℎ(𝐷)

𝐾𝑒𝑦(𝑘) ← 𝑅𝑎𝑛𝑑𝑜𝑚()

𝐸 = 𝐸𝑛𝑐𝑘 𝐷|𝐻

Meta
data

Store the key

File “F” is split
into equal size

“chunks”.

Hybrid design

19

F1 F2 F3 F4

𝐻 = 𝐻𝑎𝑠ℎ(𝐷)

𝐾𝑒𝑦(𝑘) ← 𝑅𝑎𝑛𝑑𝑜𝑚()

𝐸 = 𝐸𝑛𝑐𝑘 𝐷|𝐻

Encrypted Data

Meta
data

Store the key

File “F” is split
into equal size

“chunks”.

Replay Attacks:
Security Aspect

12

Replay Attacks:
Security Aspect

12

Replay Attacks:
Security Aspect

12

Replay Attacks:
Security Aspect

12

3

Replay Attacks:
Security Aspect

12

3
• We were able to mount this attack

on the current state-of-the-arts
[1,2,3] .

• Just encrypting data and metadata
blocks is not enough.

Inode-based
Design

DirectIndirect

2

Indirect

1

A

B

C

D

Indirect

3

Data
blocks

Metadata
blocks

Inode

Level 0

Level 2

Level 3

Level 1

13

Inode-based
Design

DirectIndirect

2

Indirect

1

A

B

C

D

Indirect

3

Data
blocks

Metadata
blocks

Inode

Level 0

Level 2

Level 3

Level 1

13

Inode-based
Design

DirectIndirect

2

Indirect

1

A

B

C

D

Indirect

3

Data
blocks

Metadata
blocks

Inode

Level 0

Level 2

Level 3

Level 1

13

Inode-based
Design

DirectIndirect

2

Indirect

1

A

B

C

D

Indirect

3

Data
blocks

Metadata
blocks

Inode

Level 0

Level 2

Level 3

Level 1

13

Inode-based
Design

DirectIndirect

2

Indirect

1

A

B

C

D

Indirect

3

Data
blocks

Metadata
blocks

Inode

Level 0

Level 2

Level 3

Level 1

13

Inode-based
Design

DirectIndirect

2

Indirect

1

A

B

C

D

Indirect

3

Data
blocks

Metadata
blocks

Inode

Level 0

Level 2

Level 3

Level 1

13

Inode-based
Design

DirectIndirect

2

Indirect

1

A

B

C

D

Indirect

3

Data
blocks

Metadata
blocks

Inode

Level 0

Level 2

Level 3

Level 1

13

Inode-based
Design

• The keys are stored in the
parent nodes.

• A write on the child node
requires updating its parent –
till the root.

DirectIndirect

2

Indirect

1

A

B

C

D

Indirect

3

Data
blocks

Metadata
blocks

Inode

Level 0

Level 2

Level 3

Level 1

Cascaded Updates

13

Compatibility Issues

14

Compatibility Issues

14

• Intel Protected File System API:
• sgx_fopen

• sgx_fopen_auto_key

• sgx_fclose

• sgx_fread

• sgx_fwrite

• sgx_fflush

• sgx_ftell

• sgx_fseek

Compatibility Issues

• Intel Protected Files:
• Requires modification to the

source code.

• Vulnerable to replay attacks.

14

• Intel Protected File System API:
• sgx_fopen

• sgx_fopen_auto_key

• sgx_fclose

• sgx_fread

• sgx_fwrite

• sgx_fflush

• sgx_ftell

• sgx_fseek

Key Takeaways

15

Key Takeaways

Replay attacks in a secure file system violates the freshness property of
the file system.

• It’s a non-trivial issue as Intel SGX semantics does not provide freshness guarantees for
data on rest.

An inode-based file system, though optimal for modern file systems,
does not meet the requirement of a secure file system.

• There is a need for a new metadata management system.

The file system should be backward compatible and should work without
any source code modifications.

15

SecureFS Design:
Characterization
What is expected from a secure file system?

16

Workloads

8

Workloads

8

Domain Benchmark

Database/Datastores
SQLite

Redis

MongoDB

Machine learning
& Deep learning

CNN

SVM

License managers
License3j

OpenSSL

Block chain
Bitcoin

Libcatena

Web services
Lighttpd

Memcached

Interaction with the File System

9

Interaction with the File System

Read and
write

pattern.

Size of
each

access.

#Read vs
#Write

Percentage
of a file

accessed.

9

Typical Access Pattern

19

Sequential Data Access

0 2000 4000 6000 8000 10000 12000

Time in ms

0

50

100

150

200

250

300

D
e

lt
a

(
)

Overlaps

Typical Access Pattern

19

Sequential Data Access

0 2000 4000 6000 8000 10000 12000

Time in ms

0

50

100

150

200

250

300

D
e

lt
a

(
)

Overlaps

Typical Access Pattern

19

Read

Sequential Data Access

0 2000 4000 6000 8000 10000 12000

Time in ms

0

50

100

150

200

250

300

D
e

lt
a

(
)

Overlaps

Typical Access Pattern

19

Read Compute Compute

Sequential Data Access

0 2000 4000 6000 8000 10000 12000

Time in ms

0

50

100

150

200

250

300

D
e

lt
a

(
)

Overlaps

Typical Access Pattern

19

Read Write Compute Compute

Sequential Data Access

0 2000 4000 6000 8000 10000 12000

Time in ms

0

50

100

150

200

250

300

D
e

lt
a

(
)

Overlaps

Typical Access Pattern

Random Data Access

19

Read Write Compute Compute

SecureFS Design
Performance Aspect

20

A FAT based file system

16

A FAT based file system

16

A FAT based file system

16

A FAT based file system

16
A single update in the FAT-entry is enough.

A FAT based file system

16

Pointers with-in the FAT
table points to chunks

of files

A single update in the FAT-entry is enough.

A FAT based file system

16

One-to-one
mapping between

the FAT table entries
and the data chunks

Pointers with-in the FAT
table points to chunks

of files

A single update in the FAT-entry is enough.

SecureFS Design
Security Aspect

23

Root-of-trust

24

Trusted Region (Data in plaintext)

Root-of-trust

24

Trusted Region (Data in plaintext)

Root-of-trust

24

Trusted Region (Data in plaintext)

Root-of-trust

24

Trusted Region (Data in plaintext)

Preventing Replay Attacks

25

Preventing Replay Attacks

25

Preventing Replay Attacks

25

Slab-Table Slab-Table

Preventing Replay Attacks

25

Slab-Table Slab-Table

Slab-Hash

Preventing Replay Attacks

25

Slab-Table Slab-Table

Slab-Hash

In the event of a
replay attack, the

initialization of the
slab-table will fail.

Evaluation
SecureFS FAT and Inode mode.

26

SecureFS: FAT vs INODE

27

SecureFS: FAT vs INODE

27

SecureFS: FAT vs INODE 2X

27

SecureFS: FAT vs INODE

The effect of cascaded-
updates can be seen.

Reads are not affected.

2X

27

SecureFS: FAT vs INODE

The effect of cascaded-
updates can be seen.

Reads are not affected.

2X

27

SecureFS
Performance

• G- Graphene Mode
• PF: Graphene Protected Files.
• SF-F: SecureFS FAT Mode
• SF-I: SecureFS INODE Mode

28

SecureFS
Performance

• G- Graphene Mode
• PF: Graphene Protected Files.
• SF-F: SecureFS FAT Mode
• SF-I: SecureFS INODE Mode

28

SecureFS
Performance

• G- Graphene Mode
• PF: Graphene Protected Files.
• SF-F: SecureFS FAT Mode
• SF-I: SecureFS INODE Mode

28

SecureFS
Performance

Similar performance if SecureFS
is mapped within Graphene.

Performance improves by 120%
if it is mapped outside.

• G- Graphene Mode
• PF: Graphene Protected Files.
• SF-F: SecureFS FAT Mode
• SF-I: SecureFS INODE Mode

28

SecureFS
Performance

29

SecureFS
Performance

29

• SF-F: SecureFS FAT Mode
• SF-I: SecureFS INODE Mode

SecureFS
Performance

29

SecureFS-FAT has a
negligible slowdown of
1.8% over Nexus.

• SF-F: SecureFS FAT Mode
• SF-I: SecureFS INODE Mode

Conclusion

30

Conclusion

31

Conclusion

Secure File System Needs

• We showed that the needs of secure file systems are very different as compared to normal file
systems.

Encryption is not enough

• We showed that relying on just encryption of data is not enough. We need a root-of-trust.

Replay attacks

• Using our novel file system design, we showed that we could provide additional security guarantees
namely immunity from replay attacks.

Efficiency

• We provide additional security guarantees while ensuring minimal performance overhead (1.8%).

31

Thank You

• Contact:

• sandeep.kumar@cse.iitd.ac.in

• srsarangi@cse.iitd.ac.in

• Department of Computer Science and
Engineering

• Indian Institute of Technology Delhi, India

32

This work has been partially supported by the Semiconductor Research
Corporation, and the Ministry of Science and Technology (Govt. of India)
via the grant DST/INT/JST/P-30/2016. ​

mailto:Sandeep.kumar@cse.iitd.ac.in
mailto:srsarangi@cse.iitd.ac.in

