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Introduction

What is SGX, and why should | care?
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Limited amount of

trusted memory.
e 128 MB, 92 MB L

usable.

SGX
SGX transparently
handles it.

e Faults are costly.
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Intel SGX:
Limitations

Operating System is NOT

trusted.

No direct system calls in
SGX.

No secure file system
access.
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Problem Statement

Bring storage in the
trusted domain.




Problem Statement

A fast and S

. ring storage |n.the
secure f||e trusted domain.
system that is
Immune to
replay attacks.
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it to the disk.

Encrypted file systems

e Data is encrypted prior to sending

In-Memory file systems

e An in-memory file system is
maintained.

Hybrid file systems

e A combination of an encrypted
file system and an in-memory file

system
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Hybrid design

File “F” is split
into equal size F1 F2 F3 F4
“chunks”.
H = H(lSh(D) Store the key
Key(k) < Random() Meta
E = Encgopm data

Encrypted Data
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Replay Attacks:
Security Aspect

[ Volume key ]

e We were able to mount this attack

on the current state-of-the-arts
[1,2,3] . Metadata Metadata

e Just encrypting data and metadata

; Key & Hash
blocks is not enough. k( dependency>\>

Data Data
F \ Time | 3 e
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Inode-based
Design

Indirect  Indirect

Direct

2 1

Inode

* The keys are stored in the
parent nodes.

................................................................................................ \ ...LevelO

Data
blocks [evel 1

* A write on the child node
requires updating its parent —
till the root.

Metadata Level 2
blOCkS ...................................

Cascaded Updates
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* Intel Protected File System API:
sgx_fopen
sgx_fopen_auto_key
sgx_fclose
sgx_fread

sgx_fwrite
sgx_fflush
sgx_ftell

sgx_fseek
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Compatibility Issues

* Intel Protected Files: * Intel Protected File System API:
* Requires modification to the e sgx_fopen
source code. sgx_fopen_auto_key

* Vulnerable to replay attacks. sgx_fclose
sgx_fread

sgx_fwrite
sgx_fflush
sgx_ftell

sgx_fseek
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Key Takeaways

Replay attacks in a secure file system violates the freshness property of

the file system.

e |t’s a non-trivial issue as Intel SGX semantics does not provide freshness guarantees for
data on rest.

An inode-based file system, though optimal for modern file systems,
does not meet the requirement of a secure file system.

e There is a need for a new metadata management system.

The file system should be backward compatible and should work without

any source code modifications.
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& Deep learning SVM
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. Lighttpd
——-— Web services
Memcached




Interaction with the File System



Interaction with the File System

Read and Size of
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A FAT based file system

v

A txt

Single FAT table entry

Metadata

B.jpg

— A txt

—»  B.jpg
> Adxt

Tty

EOF

End of
file

v

B.jpg

A 4

2 3 4 5 6

Data blocks

A single update in the FAT-entry is enough.
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A FAT based file system
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A FAT based file system

Single FAT table entry 0 t
______________ ne-to-one

mapping between

Pointers with-in the FAT
table points to chunks A txt

of files B.jpg it Metadata the FAT table entries
and the data chunks
A.txt
B.jrg
A.txt
- B.jpg
EOF Y 'lr_ Y Y Y l
End of
file

0 | 2 3 4 5 6 7

Data blocks

A single update in the FAT-entry is enough. »



SecurefFS Design



RO Ot—Of—t r u St Trusted Region (Data in plaintext)

D

N
Meta- Data
Data Blocks

~

Encrypted Form

24



RO Ot—Of—t U St - Trusted Region (Data in plaintext)

vietas Data
Data Blocks
~
(. Y,
-

Encrypted Form

24



RO Ot—Of—t U St - Trusted Region (Data in plaintext)

~
Encrypted Form

24



RO Ot—Of—t U St - Trusted Region (Data in plaintext)

Secure Remote

Slab Table
Hash

Mount &
Unmount

~
Encrypted Form
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Preventing Replay Attacks

[ Volume key ]
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Preventing Replay Attacks
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Preventing Replay Attacks

[ Volume key ]

I Slab-Table Slab-Table I

In the event of a
replay attack, the

initialization of the

slab-table will fail. Metadata L] | | Metadata
k( Key & Hash)
dependency
Data Data
F | Time | E >




EFvaluation

SecureFS FAT and Inode mode.

Hardware Setting

Maodel: Intel Core i7-10700 CPU, 2.90 GHz

DRAM: 16 GB | Disk: 256 GB (S5D)

CPUs: 1 Socket, 8 Cores, 2 HT

L1: 256 KB, L2: 2MB, L3: 16 MB

AES hardware support: YES

SHA hardware support: NO

System Settings
Linux kernel: 5.9 DVFS: fixed frequency (performance) | ASLE: Off
Python version: 3.6 | Java version: 1.8 GOC: 9.3.0
SGX Settings
[ PRM: 128 MB | Driver version: 2.11 | SDK version: 2.13
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SecureFS: FAT vs INODE

The effect of cascaded-

updates can be seen.

Reads are not affected.
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SecureFS: FAT vs INODE

The effect of cascaded-
updates can be seen.

Reads are not affected.
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Performance

* G- Graphene Mode

PF: Graphene Protected Files.
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* G- Graphene Mode

PF: Graphene Protected Files.
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SecureFS
Performance

Similar performance if SecureFS
is mapped within Graphene.

Performance improves by 120%
if it is mapped outside.

* G- Graphene Mode
* PF: Graphene Protected Files.
e SF-F: SecureFS FAT Mode
e SF-I: SecureFS INODE Mode
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SecureFS-FAT has a H
negligible slowdown of .
1.8% over Nexus. 0.00 —d
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Conclusion

Secure File System Needs

e We showed that the needs of secure file systems are very different as compared to normal file
systems.

Encryption is not enough

e We showed that relying on just encryption of data is not enough. We need a root-of-trust.

Replay attacks

e Using our novel file system design, we showed that we could provide additional security guarantees
namely immunity from replay attacks.

Efficiency

e We provide additional security guarantees while ensuring minimal performance overhead (1.8%).
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