SecureFS: A Secure File System for
Intel SGX

Sandeep Kumar and Smruti R. Sarangi
Indian Institute of Technology Delhi, India

The 24th International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2021)

Donostia / San Sebastian, Spain on October 6-8, 2021.

Outline

Outline

Desi Evaluation &
esigh Conclusion
Related

Work
Problem

Statement

Introduction

Introduction

What is SGX, and why should | care?

Intel Secure Guard eXtension

Intel Secure Guard eXtension

. 8§ 8
- 5) Ol

LJd CJd s

Intel Secure Guard eXtension

Intel Secure Guard eXtension

L J

SGX

a o & @

Secure Encrypted No-Snooping or Hardware-

Memory tampering managed

Intel SGX: Limitations

Intel SGX: Limitations

Limited amount of

trusted memory.
e 128 MB, 92 MB L

usable.

SGX
SGX transparently
handles it.

e Faults are costly.

Intel SGX:
Limitations

Intel SGX:
Limitations

Intel SGX:
Limitations

Operating System is NOT

trusted.

No direct system calls in
SGX.

No secure file system
access.

Problem Statement

Problem Statement

[Operating System }

hO)

Problem Statement

Bring storage in the
trusted domain.

Problem Statement

A fast and S

. ring storage |n.the
secure f||e trusted domain.
system that is
Immune to
replay attacks.

Related Work

[1]: Judicael B. Djoko, Jack Lange, and Adam J. Lee. 2019. NeXUS: Practical and Secure Access Control on Untrusted Storage Platforms using
Client-Side SGX. DSN, 2019

[2]: Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical Library OS for Unmodified Applications on SGX. In USENIX
Annual Technical Conference

[3]: Intel: https://software.intel.com/content/www/us/en/develop/articles/overview-of-intel-protected-file-system-library-using-software-
guard-extensions.html

Where to store the data”

Where to store the data”

it to the disk.

Encrypted file systems

e Data is encrypted prior to sending

In-Memory file systems

e An in-memory file system is
maintained.

Hybrid file systems

e A combination of an encrypted
file system and an in-memory file

system

13

Hybrid design

File “F” is split
into equal size
“chunks”.

F1

F2

F3

F4

Hybrid design

File “F” is split
into equal size
“chunks”.

F1

F2

F3

F4

Hybrid design

File “F” is split
into equal size
“chunks”.

F1

F2 F3

F4

H = Hash(D)

Hybrid design

File “F” is split
into equal size F1 F2 F3 F4

“chunks”.

H = Hash(D)
Key(k) < Random()

Hybrid design

File “F” is split
into equal size F1 F2 F3 F4

“chunks”.

H = Hash(D)
Key(k) < Random()

E = Enck(DlH)

Hybrid design

File “F” is split
into equal size F1 F2 F3 F4
“chunks”.
H = H(lSh(D) Store the key
Key(k) < Random() Meta

E = Encgopm data

Hybrid design

File “F” is split
into equal size F1 F2 F3 F4
“chunks”.
H = H(lSh(D) Store the key
Key(k) < Random() Meta
E = Encgopm data

Encrypted Data

Replay Attacks:
Security Aspect

Replay Attacks: ooty

Security Aspect }J

| Metadata :
k(Key & Hash)
dependency
Data
F | Time |
U UDUNT)

Replay Attacks:

[Volume key]

Security Aspect o o
v
| | Metadata | | || Metadata
(st
Data Data
F f—@ F'

Replay Attacks:

[Volume key]

Security Aspect
Metadata | | || Metadata
S —
Data Data
E (Time | =

Replay Attacks:
Security Aspect

[Volume key]

e We were able to mount this attack

on the current state-of-the-arts
[1,2,3] . Metadata Metadata

e Just encrypting data and metadata

; Key & Hash
blocks is not enough. k(dependency>\>

Data Data
F \ Time | 3 e

12

InOdE‘baSEd Indirect pjrect
Design | 1

Inode

InOdE‘baSEd Indirect pjrect
Design |

1

Inode

Level O

............. e

13

InOdE‘baSEd Indirect pjrect
Design | l

Inode

Level O

.................................. e

13

InOdE‘baSEd |ndi2rect Indirect pjrect
. 1
Design

Inode

.. \ ...LevelO

Data
blocks [evel 1

Metadata Level 2
.................................... blOCkS

13

InOdE‘baSEd Indi2rect Indirect pjrect
. 1
Design

Inode

.. \ ...LevelO

Data
blocks [evel 1

Metadata Level 2
... bIOCkS

13

Inode-based
Design

Indirect

2

Indirect Direct
1

Inode

.................................. \ ...LevelO

Data

blocks |evel 1

Metadata Level 2
blOCkS

13

Inode-based
Design

Indirect | Indirect

Direct
2 1

Inode

<::: ... \< Level 0

Data
blocks |evel 1

Metadata Level 2
blOCkS

13

Inode-based
Design

Indirect Indirect

Direct

2 1

Inode

* The keys are stored in the
parent nodes.

.. \ ...LevelO

Data
blocks [evel 1

* A write on the child node
requires updating its parent —
till the root.

Metadata Level 2
blOCkS

Cascaded Updates

13

Compatibility Issues

Compatibility Issues

* Intel Protected File System API:
sgx_fopen
sgx_fopen_auto_key
sgx_fclose
sgx_fread

sgx_fwrite
sgx_fflush
sgx_ftell

sgx_fseek

14

Compatibility Issues

* Intel Protected Files: * Intel Protected File System API:
* Requires modification to the e sgx_fopen
source code. sgx_fopen_auto_key

* Vulnerable to replay attacks. sgx_fclose
sgx_fread

sgx_fwrite
sgx_fflush
sgx_ftell

sgx_fseek

14

Key Takeaways

Key Takeaways

Replay attacks in a secure file system violates the freshness property of

the file system.

e |t’s a non-trivial issue as Intel SGX semantics does not provide freshness guarantees for
data on rest.

An inode-based file system, though optimal for modern file systems,
does not meet the requirement of a secure file system.

e There is a need for a new metadata management system.

The file system should be backward compatible and should work without

any source code modifications.

15

SecurefFsS Design:
Characterization

Workloads

Workloads

SQlite
— .
— Database/Datastores Redis
—
[MongoDB
Q Machine learning CNN
& Deep learning SVM
w ¥ License3j
Icense managers OpenssL
. Bitcoin
QQ Block chain .
Libcatena
. Lighttpd
——-— Web services
Memcached

Interaction with the File System

Interaction with the File System

Read and Size of
write each
pattern. access.

Percentage
of a file
accessed.

#Read vs
HWrite

Typical Access Pattern

Typical Access Pattern

300

250

N
o
o

Delta(A)
[EEN
ol
o

100
50
0 @il L 4
0 2000 4000 6000 8000 10000 12000
Time in ms

Sequential Data Access

Typical Access Pattern

300
250
200
S
<150 |Read
©
B 100
50
0 @il L
0 2000 4000 6000 8000 10000 12000
Time in ms

Sequential Data Access

Typical Access Pattern

300
250
200
S
T 150 | Read Compute
©
O 100
50
0 @il L
0 2000 4000 6000 8000 10000 12000
Time in ms

Sequential Data Access

Typical Access Pattern

300
250
200
3 :
T 150 Read Compute Write
©
O 100
50
0 @il L
0 2000 4000 6000 8000 10000 12000
Time in ms

Sequential Data Access

19

Typical Access Pattern

300

250 250
A
3 C . g 150 files
%150 |Read ompute Write =
© T \
B 100 A 100

50 50
0 @i L 2 0 . I i
0 2000 4000 6000 8000 10000 12000 100 150 200 250 300 350 400
Time in ms Time in ms

Sequential Data Access Random Data Access

SecurefFS Design

A FAT based file system

A FAT based file system

A txt

B.jpg

A txt
B.jpg
A txt
B.jpg

0

]

2

3 4

Data blocks

5

6

7

16

A FAT based file system

Single FAT table entry

[A.txt -
I Birg =T

Metadata

— A txt

—»> B.jpg
> At

——» Bjpg

EOF A 4 'lr_ \ 4 Y A 4 l

End of
file

]
Y

— F—————

0 | 2 3 4 5 6 7

Data blocks

A FAT based file system

v

A txt

Single FAT table entry

Metadata

B.jpg

— A txt

—» B.jpg
> Adxt

Tty

EOF

End of
file

v

B.jpg

A 4

2 3 4 5 6

Data blocks

A single update in the FAT-entry is enough.

16

A FAT based file system

Single FAT table ent
Pointers with-in the FAT | I e
table points to chunks A.txt

of files B.jpg

Metadata

A txt
B.jpg
A txt
B.jpg

EOF A 4 'lr_ A 4 A 4 A 4 l’

End of
file

0 | 2 3 4 5 6 7

Data blocks

A single update in the FAT-entry is enough.

A FAT based file system

Single FAT table entry 0 t
______________ ne-to-one

mapping between

Pointers with-in the FAT
table points to chunks A txt

of files B.jpg it Metadata the FAT table entries
and the data chunks
A.txt
B.jrg
A.txt
- B.jpg
EOF Y 'lr_ Y Y Y l
End of
file

0 | 2 3 4 5 6 7

Data blocks

A single update in the FAT-entry is enough. »

SecurefFS Design

RO Ot—Of—t r u St Trusted Region (Data in plaintext)

D

N
Meta- Data
Data Blocks

~

Encrypted Form

24

RO Ot—Of—t U St - Trusted Region (Data in plaintext)

vietas Data
Data Blocks
~
(. Y,
-

Encrypted Form

24

RO Ot—Of—t U St - Trusted Region (Data in plaintext)

~
Encrypted Form

24

RO Ot—Of—t U St - Trusted Region (Data in plaintext)

Secure Remote

Slab Table
Hash

Mount &
Unmount

~
Encrypted Form

24

Preventing Replay Attacks

Preventing Replay Attacks

[Volume key]

b

i Metadata : : Metadata
k(Key & Hash)
dependency
Data Data
F (Time) E

Preventing Replay Attacks

[Volume key]

I Slab-Table Slab-Table I
Metadata | | || Metadata
k(Key & Hash)
dependency
Data Data
F (Time) E

25

Preventing Replay Attacks

[Volume key] Slab-Hash

I Slab-Table Slab-Table I
Metadata | | | | Metadata
k(Key & Hash)
dependency
Data Data
F I
 Time | E >

Preventing Replay Attacks

[Volume key]

I Slab-Table Slab-Table I

In the event of a
replay attack, the

initialization of the

slab-table will fail. Metadata L] | | Metadata
k(Key & Hash)
dependency
Data Data
F | Time | E >

EFvaluation

SecureFS FAT and Inode mode.

Hardware Setting

Maodel: Intel Core i7-10700 CPU, 2.90 GHz

DRAM: 16 GB | Disk: 256 GB (S5D)

CPUs: 1 Socket, 8 Cores, 2 HT

L1: 256 KB, L2: 2MB, L3: 16 MB

AES hardware support: YES

SHA hardware support: NO

System Settings
Linux kernel: 5.9 DVFS: fixed frequency (performance) | ASLE: Off
Python version: 3.6 | Java version: 1.8 GOC: 9.3.0
SGX Settings
[PRM: 128 MB | Driver version: 2.11 | SDK version: 2.13

26

SecureFS: FAT vs INODE

SecureFS: FAT vs INODE

== FAT
—— INODE

20 25 30
Latency of write() in ms

SecureFS: FAT vs INODE

—— FAT
—— INODE

20 25 30
Latency of write() in ms

SecureFS: FAT vs INODE

The effect of cascaded-

updates can be seen.

Reads are not affected.

CDF

100%

80%

60%

40%

20%

0%

—
——————

1

] 2X

'ﬁ

]

|

|

|

|

I - = FAT

| —— INODE J
15 20 25 30

Latency of write() in ms

27

SecureFS: FAT vs INODE

The effect of cascaded-
updates can be seen.

Reads are not affected.

100% | _=
’_—
el 2X
'ﬁ
L 60% |1
8 |
40% |'
|
20% | 1 - = FAT
o | —— INODE J
(o]
15 20 25 30
Latency of write() in ms
100%
80%
L 60%
o
40%
20% - = FAT
= |[NODE

0%

15
Latency of read() in ms

27

SecurekrS
Performance

SecureFS
Performance

* G- Graphene Mode

PF: Graphene Protected Files.

SF-F: SecureFS FAT Mode
SF-1: SecureFS INODE Mode

—

O
)
2

~
a8}
AV4

4
-}
0O 200,000
)
5 150,000 -

@)
sl
e
I_

400,000
350,000
300,000
250,000

100,000 -
50,000 -

[G-PF

B G-SF-F HEl G-SF-

Graphene ___

r—L

0

Read

28

SecureFS
Performance

* G- Graphene Mode

PF: Graphene Protected Files.

SF-F: SecureFS FAT Mode
SF-1: SecureFS INODE Mode

—

O
)
2]
~
2]
AV4

—
)

>
Q. 200,000+
L
5 150,000+

@)
sl
e
I_

400,000
350,000
300,000
250,000

100,000 -
50,000 -

0

[G-PF [N G-SF-F EEE G-SF
B SF-F [SFI ——

S

Non-Graphene

Graphene

r—L

—

' Write L Read

28

SecureFS
Performance

Similar performance if SecureFS
is mapped within Graphene.

Performance improves by 120%
if it is mapped outside.

* G- Graphene Mode
* PF: Graphene Protected Files.
e SF-F: SecureFS FAT Mode
e SF-I: SecureFS INODE Mode

KB/sec)

S—"
-

400,000
350,000
300,000
250,000

>
Q. 200,000+
L
5 150,000+

@)
sl
e
I_

100,000 -
50,000 -

0

1 G-PF EEE G-SF-F

BN SF-F [SF-

Graphene

r—L

Non-Graphene

EE G-SF-I

—

Read

28

SecurekrS
Performance

SecureFS
Performance

Time
Normalized
o
(6]
o

o

1.00
0.75
0.2

0.00

LT Log b7 T N
L5 L 5 L5 7] L 5 %)
SVM LibCatena OpenSSL License3j BTree Hashbin BFS PageRank

e SF-F: SecureFS FAT Mode
e SF-I: SecureFS INODE Mode

29

SecureFS
Performance

SecureFS-FAT has a H
negligible slowdown of .
1.8% over Nexus. 0.00 —d

Time
Normalized
o o
[N
o o

o

LT I+ %z T4 n
L5 7] L 5 L5 7] L5 %)
SVM LibCatena OpenSSL License3j BTree Hashbin BFS PageRank

e SF-F: SecureFS FAT Mode
e SF-I: SecureFS INODE Mode

29

Conclusion

Conclusion

Conclusion

Secure File System Needs

e We showed that the needs of secure file systems are very different as compared to normal file
systems.

Encryption is not enough

e We showed that relying on just encryption of data is not enough. We need a root-of-trust.

Replay attacks

e Using our novel file system design, we showed that we could provide additional security guarantees
namely immunity from replay attacks.

Efficiency

e We provide additional security guarantees while ensuring minimal performance overhead (1.8%).

31

Thank You

* Contact:

sandeep.kumar@cse.iitd.ac.in
srsarangi@cse.iitd.ac.in

Department of Computer Science and
Engineering

Indian Institute of Technology Delhi, India

This work has been partially supported by the Semiconductor Research
Corporation, and the Ministry of Science and Technology (Govt. of India)
via the grant DST/INT/JST/P-30/2016.

32

mailto:Sandeep.kumar@cse.iitd.ac.in
mailto:srsarangi@cse.iitd.ac.in

