
SecureFS: A Secure File System for 
Intel SGX

Sandeep Kumar and Smruti R. Sarangi

Indian Institute of Technology Delhi, India

The 24th International Symposium on Research in Attacks, Intrusions and 
Defenses (RAID 2021)

Donostia / San Sebastian, Spain on October 6-8, 2021.



Outline

2



Outline

Introduction

Problem 
Statement

Related 
Work

Design
Evaluation & 
Conclusion

2



Introduction
What is SGX, and why should I care?
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Limited amount of 
trusted memory.

• 128 MB, 92 MB 
usable.

SGX transparently 
handles it.

• Faults are costly.
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Limitations

Operating System is NOT 
trusted.

No direct system calls in 
SGX.

No secure file system 
access.
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Problem Statement

Bring storage in the 
trusted domain.

A fast and 
secure file 
system that is 
immune to 
replay attacks.
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Where to store the data?

Encrypted file systems

• Data is encrypted prior to sending 
it to the disk.

In-Memory file systems

• An in-memory file system is 
maintained.

Hybrid file systems

• A combination of an encrypted 
file system and an in-memory file 
system
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F1 F2 F3 F4

𝐻 = 𝐻𝑎𝑠ℎ(𝐷)

𝐾𝑒𝑦(𝑘) ← 𝑅𝑎𝑛𝑑𝑜𝑚()

𝐸 = 𝐸𝑛𝑐𝑘 𝐷|𝐻

Encrypted Data

Meta 
data

Store the key

File “F” is split
into equal size 

“chunks”.
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• We were able to mount this attack 

on the current state-of-the-arts 
[1,2,3] .

• Just encrypting data and metadata 
blocks is not enough.
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Inode-based
Design

• The keys are stored in the 
parent nodes.

• A write on the child node 
requires updating its parent –
till the root.
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• Intel Protected File System API: 
• sgx_fopen

• sgx_fopen_auto_key

• sgx_fclose

• sgx_fread

• sgx_fwrite

• sgx_fflush

• sgx_ftell

• sgx_fseek



Compatibility Issues

• Intel Protected Files:
• Requires modification to the 

source code.

• Vulnerable to replay attacks.
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• Intel Protected File System API: 
• sgx_fopen

• sgx_fopen_auto_key

• sgx_fclose

• sgx_fread

• sgx_fwrite

• sgx_fflush

• sgx_ftell

• sgx_fseek
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Key Takeaways

Replay attacks in a secure file system violates the freshness property of 
the file system.

• It’s a non-trivial issue as Intel SGX semantics does not provide freshness guarantees for 
data on rest.

An inode-based file system, though optimal for modern file systems, 
does not meet the requirement of a secure file system.

• There is a need for a new metadata management system.

The file system should be backward compatible and should work without 
any source code modifications.
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SecureFS Design: 
Characterization
What is expected from  a secure file system?
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Workloads
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Domain Benchmark

Database/Datastores
SQLite

Redis

MongoDB

Machine learning 
& Deep learning

CNN

SVM

License managers
License3j

OpenSSL

Block chain
Bitcoin

Libcatena

Web services
Lighttpd

Memcached



Interaction with the File System

9



Interaction with the File System

Read and 
write 

pattern.

Size of 
each 

access.

#Read vs 
#Write 

Percentage 
of a file 

accessed.
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Typical Access Pattern
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SecureFS Design
Performance Aspect
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A single update in the FAT-entry is enough.



A FAT based file system
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Pointers with-in the FAT 
table points to chunks 
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A single update in the FAT-entry is enough.



A FAT based file system

16

One-to-one 
mapping between 

the FAT table entries 
and the data chunks

Pointers with-in the FAT 
table points to chunks 

of files

A single update in the FAT-entry is enough.
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Slab-Table Slab-Table

Slab-Hash

In the event of a 
replay attack, the 

initialization of the 
slab-table will fail.



Evaluation
SecureFS FAT and Inode mode.
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27



SecureFS: FAT vs INODE

27



SecureFS: FAT vs INODE 2X

27



SecureFS: FAT vs INODE

The effect of cascaded-
updates can be seen.

Reads are not affected.
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SecureFS 
Performance

• G- Graphene Mode
• PF: Graphene Protected Files.
• SF-F: SecureFS FAT Mode
• SF-I: SecureFS INODE Mode
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SecureFS 
Performance

Similar performance if SecureFS 
is mapped within Graphene.

Performance improves by 120% 
if it is mapped outside.

• G- Graphene Mode
• PF: Graphene Protected Files.
• SF-F: SecureFS FAT Mode
• SF-I: SecureFS INODE Mode
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• SF-F: SecureFS FAT Mode
• SF-I: SecureFS INODE Mode
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SecureFS-FAT has a 
negligible slowdown of 
1.8% over Nexus.

• SF-F: SecureFS FAT Mode
• SF-I: SecureFS INODE Mode
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Conclusion

Secure File System Needs

• We showed that the needs of secure file systems are very different as compared to normal file 
systems.

Encryption is not enough

• We showed that relying on just encryption of data is not enough. We need a root-of-trust.

Replay attacks

• Using our novel file system design, we showed that we could provide additional security guarantees 
namely immunity from replay attacks.

Efficiency

• We provide additional security guarantees while ensuring minimal performance overhead (1.8%).

31



Thank You

• Contact:

• sandeep.kumar@cse.iitd.ac.in

• srsarangi@cse.iitd.ac.in

• Department of Computer Science and 
Engineering

• Indian Institute of Technology Delhi, India

32

This work has been partially supported by the Semiconductor Research 
Corporation, and the Ministry of Science and Technology (Govt. of India) 
via the grant DST/INT/JST/P-30/2016. ​

mailto:Sandeep.kumar@cse.iitd.ac.in
mailto:srsarangi@cse.iitd.ac.in

