
A Tug-of-War between Static and Dynamic Memory
in Intel SGX

Sandeep Kumar∗#, Abhisek Panda†# , Advait Nerlikar‡§ , and Smruti R. Sarangi†
∗School of Information Technology, IIT Delhi, Delhi, India
†Computer Science and Engineering, IIT Delhi, Delhi, India

‡Electrical and Electronics Engineering, BITS Pilani, Goa, India
Email: sandeep.kumar@sit.iitd.ac.in, {abhisek.panda, srsarangi}@cse.iitd.ac.in, f20180282@goa.bits-pilani.ac.in

Abstract—Security of applications and data in a cloud setting
has become a first-class design criterion. Hardware vendors
have proposed trusted execution environments or TEEs where the
hardware guarantees an application’s data and code security both
at rest and in-use, even from privileged entities such as operating
systems and hypervisors. Software Guard eXtension, or SGX, is
a popular, trusted execution environment or TEE solution from
Intel. To ensure security guarantees, SGX provides secure sand-
box environments called enclaves, which have encrypted physical
memory. In the latest version of SGX, we start an enclave with a
the specified amount of “static” memory specified by a developer.
Subsequently, we add additional memory pages “dynamically” to
an enclave depending on an application’s memory usage. In this
paper, we analyze the impact of the allocation and freeing of
static and dynamic pages on an application’s performance. We
observe that inappropriately setting the static memory size may
lead to a performance slowdown of up to 20×.

We present Harmony – a profile-guided optimizer that mea-
sures the impact of dynamic memory management on an appli-
cation’s performance, and suggests a near-optimal distribution
for static and dynamic memory pages. We show that Harmony
improves the execution latency of an application by up to 68%
and 29% when compared with the purely dynamic and purely
static allocation schemes, respectively.

Index Terms—SGX, secure memory, performance

I. INTRODUCTION

Intel SGX [1] (Software Guard Extensions) is a popular
hardware-based trusted execution environment (TEE) that en-
ables the secure execution of applications on untrusted cloud
servers across multiple domains such as file systems, key-value
stores, AI/ML applications and blockchains [2, 3, 4, 5]. To
ensure the secure execution of an application, SGX provides
secure sandbox environments called enclaves, which have
encrypted physical memory. The SGX hardware ensures the
authenticity, confidentiality, integrity, and freshness properties
of the code and data stored in the enclaves. Due to these pro-
tections, untrusted entities, even with root-level access, such
as the operating system, hypervisor, and server administrators,
cannot compromise the security of an application executing in
an enclave [6].

To ensure security, SGX imposes the following restrictions
on enclaves (at the software level): prohibiting system calls

#Equal contribution
§Work done during an internship at IITD

0% 20% 50% 80% 100%
% Static memory

0

4

8

12

16

20

N
o
rm

a
liz

e
d

 s
lo

w
d

o
w

n High
sensitivity

(a) Application 1

0% 20% 50% 80% 100%
% Static memory

0

4

8

12

16

20

N
o
rm

a
liz

e
d

 s
lo

w
d

o
w

n Low
sensitivity

(b) Application 2

Fig. 1: Different applications show different sensitivity to
performance on the proportion of statically allocated pages.
Application 1, which often allocates and deallocates memory,
is significantly more sensitive to the number of static pages
than Application 2, which allocates and deallocates memory
only once. The performance slowdown is normalized w.r.t.
their respective programs when executed with 100% statically
allocated pages.

and privileged operations within an enclave, requiring pre-
defined entry and exit points for an enclave , and prohibiting
access to an isolated memory region that stores metadata –
the enclave page cache map (EPCM). In the earlier version
of SGX (SGXv1), an application had to specify the maximum
amount of secure memory it needed before execution. Sub-
sequently, SGXv1 allocated the specified amount of memory
to an enclave at the time of its initialization. Any attempt
by the application to allocate memory beyond the specified
bound resulted in an out of memory (OOM) error. Estimating the
memory requirements of a modern application is not a trivial
task, and developers typically over-provision an enclave’s
memory to avoid such an OOM error.

To reduce the wastage in an enclave’s memory, the latest
version of SGX (SGXv2) introduces enclave dynamic memory
management or EDMM. EDMM enables enclave initializa-
tion with minimum memory (≥ 4KB) and allows dynamic
addition of memory pages to an enclave [7]. Data pages are
now divided into two categories: static (allocated during the
initialization phase) and dynamic (allocated on-demand while
the application is executing).

Static pages, like in SGXv1, are added to an enclave using
EADD instructions and are associated with the enclave for its
entire lifetime. Dynamic memory management is similar to
classical demand paging, albeit with significant overheads due
to security constraints. A secure page addition requires one
enclave exit causing a TLB flush due to a transition to unsecure
mode, two context switches, and one ECALL [8]. During the
page addition, an inverse page table lookup needs to be done
to ensure that the newly allocated secure page is not mapped
to any other process, and metadata entries need to be made in
the EPCM. Subsequently, dynamic pages are added using the
EAUG instruction [7].

As shown in Figure 1, based on the memory requirements,
an application can suffer a performance overhead of up to 20×
if the amount of static memory is not configured properly
(see Figure 1a). However, certain applications show similar
performance irrespective of the static and dynamic memory
distribution (see Figure 1b). In this paper, we thoroughly
analyze how SGX manages static and dynamic pages: the al-
location/deallocation path, the specific allocation mechanisms
and their associated latencies. We then study the effect of
varying the static memory size on an application’s performance
and the enclave initialization latency. Essentially, we answer
the following question, “Why are certain applications highly
sensitive to the amount of static memory, and why are others
not affected by it?”. Based on our observations, we intro-
duce the impact score metric that determines the relationship
between the memory access pattern and the application’s
performance (lower the better).

Finally, we propose Harmony – a profile-based optimizer
that configures the system correctly with the right number of
static pages to balance the initialization latency and overall
performance impact. We show that Harmony improves the
execution latency of an application by up to 68% and 29%
when compared with an all-dynamic and all-static setting,
respectively. To the best of our knowledge, this is the first
work that solves such a problem, which has serious practical
consequences. Our specific contributions are as follows:

1) We perform a deep-dive analysis of the allocation process
of static and dynamic memory pages. We specifically study
their methods of allocation, their lifespan and associated
latencies in Intel SGX using microbenchmarks.

2) We show that an ill-configured system can incur a perfor-
mance overhead of up to 20×. We present an analysis of
what makes an application sensitive or immune to the extent
of enclave dynamic memory allocation (EDMM).

3) Next, we propose a novel profile-based optimizer that
provides the best allocation of static pages, such that the
impact of a given dynamic memory allocation policy on
the application’s performance.

II. BACKGROUND

A. A Primer on Intel SGX
Intel SGX guarantees the authenticity, confidentiality, in-

tegrity and freshness of the code and data stored within it. The

TABLE I: Description of microbenchmarks. We perform se-
quential read and write operations on all memory regions in
each ECALL. Fixed memory: Allocated at the beginning and
freed at the end. Scratchpad memory [9]: Allocated and freed
on every ECALL

Benchmark Description Fixed &
Scratchpad

SGXMain
(SM)

Allocates a fixed memory region. 1 GB & 0 GB

SGXPartial
(SP)

Allocates two regions: fixed and scratch-
pad – a hybrid memory organization.

500 MB &
500 MB

SGXFree
(SF)

Allocates a scratchpad memory region. 0 GB & 1 GB

application is executed within a sandbox. Due to its security
constraints, an enclave cannot directly use OS services. To
do so, it must make an outside call or OCALL. Similarly, a
normal application needs to execute an enclave call or ECALL
to access a function within an enclave.

Memory Management : At boot time, SGX reserves a portion
of the physical address space to be used as secure memory.
This reserved region is called the processor-reserved memory
(PRM), and the region used by applications is referred to as
the Enclave Page Cache or EPC [6]. SGX allows applications
with a size larger than the EPC size by transparently evicting
pages from the EPC [6]. In SGXv1, the developer of a
secure application is required to estimate the total memory
requirements of the application upfront. The SGX hardware
statically “commits” this memory to the enclave using the
EADD instruction [7] during initialization.

SGXv2 introduced the concept of static and dynamic mem-
ory regions in an enclave’s address space using enclave
dynamic memory management (EDMM). A static region rep-
resents an area that has physical EPC pages backing it. The
dynamic region indicates that no physical EPC pages have
been assigned to it during initialization. They will be assigned
later on demand. The application developer can specify the
initial static enclave memory size that needs to be provided
to the enclave at initialization time (HeapInitSize) along
with a parameter specifying the maximum memory the enclave
can use (HeapMaxSize).

Dynamic Memory Allocation: SGXv2 dynamically allocates
memory to an enclave on a fault when the enclave attempts
to access a page that is yet to be allocated (for example, right
after a malloc() call). The SGX driver allocates a page
using the EAUG instruction and later adds it to the enclave
using the EACCEPT instruction [7, 10]. In SGXv2, an enclave
can be configured to execute with just a single 4 KB page
for the heap (SGX may add a few additional pages for its
metadata). It is important to note that the OS still manages
the page table; however, all updates to the TLB need to be
vetted by the SGX subsystem, which uses an inverted page
table (stored in the enclave page cache map or EPCM) to
verify that there are no security violations [6].

EPC Evictions: If an application’s working set crosses the
EPC limit, SGX transparently handles the eviction and loading

≈
0% 10

%
20

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%
10

0%

% Static memory

0

4

8

12

16

20
N

o
rm

.
sl

o
w

d
o
w

n SM SP SF

(a) Performance slowdown (normalized to 100% static memory.)

≈
0% 10

%
20

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%
10

0%

% Static memory

0

40

80

120

160

200

N
o
rm

.
In

it
.
Ti

m
e

Init Time

(b) Enclave initialization time (normalized to 0% static memory.)

Fig. 2: (a) Slowdown of microbenchmarks (also see Table I) and (b) enclave initialization time as a function of ratio of the
static memory size to the maximum memory requirement.

TABLE II: Table showing number of EADD, EAUG, and EREMOVE operations for microbenchmarks (see Table I).

Bench Inst. ≈0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
SM EADD 0K 26K 51K 77K 103K 128K 154K 179K 205K 231K 256K
SM EAUG 256K 230K 205K 179K 154K 128K 102K 77K 51K 26K 0K
SM EREMOVE 512K 487K 461K 436K 410K 384K 359K 333K 308K 282K 256K
SP EADD 0K 26K 51K 77K 103K 128K 154K 179K 205K 231K 256K
SP EAUG 384K 358K 333K 307K 282K 256K 205K 154K 102K 51K 0K
SP EREMOVE 768K 743K 717K 692K 666K 640K 564K 487K 410K 333K 256K
SF EADD 0K 26K 51K 77K 103K 128K 154K 179K 205K 231K 256K
SF EAUG 512K 461K 410K 358K 307K 256K 205K 154K 102K 51K 0K
SF EREMOVE 1M 947K 871K 794K 717K 640K 564K 487K 410K 333K 256K

of pages from/to the EPC while ensuring the confidentiality
and integrity of the page. The EWB instruction is used to evict a
page from the EPC. The instruction takes the EPC page as the
input and generates an encrypted version of the page (along
with an 8-byte nonce). It also generates the corresponding
MAC (message authentication code). The encrypted page and
the MAC are written to unsecure memory, and the nonce
is stored in a VA slot (page within the EPCM). Encryption
ensures confidentiality, the MAC ensures integrity, and the
nonce ensures the freshness of the evicted page. Note that cold
boot and side-channel attacks are not in the scope of SGX [7].

III. MOTIVATION

A. Static and Dynamic Memory

As discussed before, data pages can be added to an enclave
either at the time of initialization (static) or on a page
fault (dynamic). At first glance, starting an enclave with the
minimum amount of memory and letting the SGX memory
system handle the page allocations seems like the best possible
choice. This is akin to the behavior in operating systems
like the latest version of Linux. However, as seen in our
experiments (see Figure 1 and Figure 2a), the performance
of certain applications is extremely sensitive to the number of
pages allocated statically (static:dynamic or SD ratio).

Performance analysis: To analyze the effect of the initially
committed memory on the performance, we execute a set of
micro-benchmarks (see Table I) with different amounts of
static memory. As shown in Figure 2, different applications
show different behaviors when the statically allocated memory
size increases.

SGXMain, which allocates a fixed amount of memory
upfront and then performs read and write operations on it,
is the baseline. As a matter of fact, if there are no free
calls, the sum of the number of EADD and EAUG instructions
will always remain the same (256K × 4KB = 1GB).
In the figure, the performance of SGXMain shows a slight
variation due to the additional cost associated with allocating
a dynamic page. Note that the cost of adding a single 4 KB
page dynamically is higher that if it is added statically due
to additional SGX operations associated with the former: an
asynchronous enclave exit, two context switches between user
and kernel mode, and one ECALL [8].

For SGXPartial, we allocate half of the total memory as
the fixed memory region, while the remaining half serves as
the scratchpad memory region (refer Table I). We observe
that as the enclave’s static memory allocation increases, the
application’s performance slowdown decreases. This is be-
cause a higher static memory allocation reduces the frequency
of EAUG and EREMOVE instructions, which are required for

TABLE III: Latency of key SGX operations

Instruction Description Latency
EADD
(add_page)

Adds an EPC page to a pre-
initialized enclave

5.52µs

EAUG
(encl_augment)

Adds an EPC page to a running
enclave

5.70µs

EREMOVE
(free_page)

Frees an EPC page 1.5µs

dynamic memory operations. This improvement is associated
with a rise in the enclave initialization latency (see Figure 2b).
Notably, the performance improvement in SGXPartial is sig-
nificantly more evident as static allocation increases from 50%
to 60%. There is an 18% decrease in the slowdown.

We observe a similar trend with SGXFree, where we
allocate the entire memory in the scratchpad memory region.

Observation: The amount of statically allocated memory
should be decided based on an application’s memory usage
characteristics.

B. Allocation Latencies

Here, we measure the latency of the key operations in the
SGX memory management subsystem. We use the standard
ftrace [11] utility to measure the latencies of functions in the
SGX driver responsible for allocation and freeing of secure
memory. The latencies reported are the geometric mean of
10 K readings. As shown in Table III, the functions executing
EADD and EAUG have roughly the same latencies.

Observation: A free page() (EREMOVE) operation in SGX
is a much faster operation as compared to adding a page.

IV. DESIGN AND IMPLEMENTATION

In this section, we discuss the design and implementation
of Harmony. Harmony aims to optimize the initial enclave
size of an application such that we find a balance between the
initialization time and the overall performance of an enclave.

A. Overview

Figure 3 shows a high-level design of Harmony, which
primarily consists of three components: ❶ a profiler, ❷ an
evaluator, and ❸ an optimizer. The profiler collects execution-
related statistics, which are then fed to the evaluator to deter-
mine the impact of memory allocations on the execution of the
workload. The optimizer takes this information and computes
the ratio of the static and maximum memory requirement for
the application.

B. Profiler

In SGXv2, the memory allocation and deallocation pattern
of a secure application impacts its performance (discussed
in Section III). The profiler is responsible for collecting this
pattern for every application.

The profiler executes an application by setting the ini-
tial enclave size (static memory) to a single 4 KB page.
It then records the alloc() and free() calls along

with the respective values of the “size” argument using the
strace [12] utility. Additionally, it uses an instrumented
version of the SGX driver that captures calls made to
sgx_encl_add_page(), sgx_encl_augment(), and
sgx_encl_free_page() functions. After the completion
of the execution, it finds the number EADD, EAUG, and
EREMOVE instructions by processing the logs.

Process Profiler

EvaluatorOptimizer

SGX instructions &
(de)allocations sequence

Impact score

Static/dynamic
distribution

Fig. 3: A high-level design of Harmony.

C. Evaluator

The evaluator takes the profile information from the profiler,
and determines the relationship between the memory access
pattern and the slowdown of an application. To determine this
relationship, we formulate a novel score function that analyzes
a given memory access pattern and provides an Impact Score.
The Impact Score ∈ [0, 1), where 0 indicates no impact and a
higher value indicates greater impact.

Intuition: As seen in Section III, application performance
is negatively impacted due to EAUG calls only if it makes
an allocation request after a free request. Assume that
an application allocation and freeing sequence is as fol-
lows: alloc(100MB), free(50MB), alloc(100MB),
free(150MB). Here, the second allocation request is doing
an additional 50 MB of allocation due to the free(50MB)
request made before. The last free(150MB) has no impact
on the performance as there are no alloc() requests after
that. Hence, we calculate two values:

• alloctot: Total allocation requests made by the applica-
tion. (200 MB in the above example)

• freetot: Total free requests made by the application
followed by at least one allocation request. (50 MB in
the above example). Note that the allocation at the end
is mandatory, otherwise freetot = 0.

Impact Score: We then define the Impact Score (IS) as
follows:

IS = 1−
(
alloctot − freetot

alloctot

)
(1)

For the example above, Impact Score will be 1−(150200) = 0.25.
Intuitively, Impact Score indicates that 25% of 200 MB =
50 MB should be allocated as static memory. Based on the
impact score of an application, the developer decides whether
to reconfigure the static memory size of an application using
the optimizer. Note that freetot < alloctot because of a
mandatory allocation after freetot is computed.

D. Optimizer

Static Page Distribution: Let memmax represent the maxi-
mum memory requirement of an application, and let β repre-
sent the ratio of the size of static memory to memmax; β = 1
implies that all the pages are static, whereas β ≈ 0 denotes that
the number of static pages is set to one 4KB page. Note that
in addition to the memory pages allocated for an application,
SGX allocates around 600 KB of heap pages for its internal
metadata, irrespective of the value of β.

Overhead Analysis: In Section III, we observe that an
application suffers from a performance slowdown for low
values of β and an increase in the enclave’s initialization
latency for high values of β. The overheads associated with
the enclave’s initialization (init ovh) and dynamic memory
management (exec ovh) contribute to the total overhead of an
application. Thus, we can formulate the total overhead (ovh)
of an application as follows:

ovh = init ovh+ exec ovh (2)

All of them are a function of β.

Initialization Overhead: An application experiences minimal
initialization time when the enclave is initiated with a single
4 KB static page (β ≈ 0); conversely, the initialization time
gets prolonged when all of the required pages are marked
as static (β = 1). This occurs because a higher value of
β leads to an increase in the number of EADD invocations,
resulting in a higher initialization latency for the application’s
enclave. Therefore, we can measure the initialization overhead
(init ovh) due to static page allocation as follows:

init ovh = #EADD(β) (3)

Note that the number of EADD instructions is a function of
β.

Execution Overhead: An application suffers from a perfor-
mance slowdown due to the additional EAUG and EREMOVE
instructions. If we increase β, we observe a decrease in the
frequency of EAUG and EREMOVE calls (refer to Table II). For
instance, if we increase the static memory by 50% across all
microbenchmarks, the number of EAUG and EREMOVE calls
reduces by 20-50%. Therefore, we can formulate the execution
overhead (exec ovh) using the following equation:

exec ovh = #EAUG(β) + 0.3×#EREMOV E(β) (4)

The factor of 0.3 is derived from the latency of EAUG and
EREMOVE (see Table III). Finally, the total overhead of an
application is as follows:

ovh = #EADD(β)) + #EAUG(β) + 0.3×#EREMOV E(β) (5)

The optimizer collects the profiling logs of an application from
the profiler, which consists of the number of EADD, EAUG,
and EREMOVE calls for different values of β. Subsequently,
it infers the relationship between the SGX statistics and β

TABLE IV: Description of the workloads (adapted from
SGXGauge [14]) and their respective settings.

Workloads Description Input/Setting
BFS Traverse graphs generated by web

crawlers. Use breadth-first search.
Nodes 150 K
Edges 1.9 M

B-Tree Create a B-Tree and perform lookup
operations on it.

Elements: 16 M

HashJoin Probe a hash-table (used to imple-
ment equijoin in DBs)

Look ups:
20 M

OpenSSL Encryption-decryption library. Size: 1.1 GB

PageRank Assign ranks to pages based on pop-
ularity (used by search engines).

Nodes 5000
Edges 12.5 M

SVM Popular ML algorithm (application:
text and hypertext categorization)

Rows 10000
Features 128

TABLE V: The execution latency of workloads under the
following settings: all-static (A-STAT), all-dynamic (A-DYN)
and Harmony (HMY).

Setting Static
Mem
(MB)

β Init
Time
(ms)

Total
Time

(s)

vs
A-DYN

vs A-
STAT

B
FS

A-DYN 0 – 28 17 0.00% 18.24%
A-STAT 2,144 – 3,712 20 -22.30% 0.00%
HYM 1,073 0.5 1,948 15 9.76% 26.21%

B
Tr

ee
A-DYN 0 – 26 37 0.00% -6.60%
A-STAT 1,077 – 1,755 35 6.19% 0.00%
HYM 862 0.8 1,450 35 4.96% -1.31%

H
as

hJ
oi

n A-DYN 0 – 26 82 0.00% -1.82%
A-STAT 1,227 – 2,463 80 1.79% 0.00%
HYM 982 0.8 160 78 4.23% 2.48%

O
pe

nS
SL A-DYN 0 – 46 61 0.00% -122%

A-STAT 2,155 – 2,882 28 54.97% 0.00%
HYM 435 0.2 3,784 20 67.97% 28.88%

SV
M

A-DYN 0 – 26 26 0.00% -6.05%
A-STAT 688 – 1,116 25 5.70% 0.00%
HYM 140 0.2 256 24 10.42% 5.00%

based on the memory access patterns and characteristics of
the application. Finally, it calculates a suitable value of β that
minimizes the value of ovh using Equation 5.

V. EVALUATION

A. Experimental Setup

We use a 2-socket system with two Intel Xeon Gold 6534
CPUs (72 cores), 1 TB of memory, 512 GB of SSD storage,
1 TB HDD, running Linux kernel 5.15. The systems are
connected via a 1 Gbps network. The system support scalable
SGX with an EPC up to 64 GB. We use Intel SGX SDX v2.13
for our SGX setup. The workloads used for the experiments
are shown in Table IV. We use ftrace [11] to measure the
frequency and time taken by the functions in the Intel SGX
driver. To measure the performance-related hardware counters,
we use the popular perf tool [13].

B. Results

Harmony improves the performance of an enclave by
19.47% and 12.25% compared to all-dynamic (set the static

TABLE VI: SGX statistics for the following settings: all-static
(A-STAT), all-dynamic (A-DYN) and Harmony (HMY).

Setting EADD EAUG EREMOVE

B
FS

A-DYN 0.7K 547.9K 1.1M
A-STAT 548.8K 0.0K 549.9K
HMY 274.7K 274.0K 823.2K

B
Tr

ee

A-DYN 0.7K 262.7K 526.0K
A-STAT 275.7K 0.0K 276.2K
HMY 220.6K 42.8K 306.6K

H
as

hj
oi

n A-DYN 0.7K 313.1K 626.9K
A-STAT 314.1K 0.0K 314.7K
HMY 251.3K 62.5K 376.8K

O
pe

nS
SL A-DYN 1.4K 1.6M 3.3M

A-STAT 551.8K 0.0K 552.9K
HMY 111.4K 1.3M 2.7M

SV
M

A-DYN 0.7K 174.0K 348.8K
A-STAT 176.1K 0.0K 176.4K
HMY 35.8K 139.0K 313.8K

memory size to a 4 KB page) and all-static (set the static
memory size to the maximum memory requirement) configu-
rations, respectively. Table V shows the distribution of pages
(β) for different workloads. The selected distribution achieves
a balance between the initialization time and overall execution
speed of the workload. Table VI shows the corresponding
instructions executed by SGX.

VI. RELATED WORK

Apart from challenges in porting an application to Intel
SGX [15], the adoption of Intel SGX is hampered by the per-
formance overheads associated with executing an application.
As shown by prior work and also seen in our experiments,
application execution in SGX can incur a slowdown of up
to 20×. This is due to the high cost of enclave transitions
to make system calls and costly EPC faults. Researchers have
proposed many different solutions to mitigate the performance
overheads associated with Intel SGX. However, they have not
studied the impact of the ratio of static to dynamic memory
allocation on an application’s performance degradation.

Liu et al. [16] propose a page pre-fetching mechanism
for bringing a page from the unsecure memory to the secure
memory based on an application’s memory access pattern.
Dinh Ngoc et al. [17] argues for a dynamic page table
switching mechanisms from nested paging [18] to shadow
paging [19] in a virtual setting based on the application
behavior. Weisse et al. [20] propose a better mechanism to
interact with the operating system by leveraging an idle core
in a multi-core system.

Weisse et al. [20] propose a mechanism to mitigate the cost
of frequent transitions from the secure to unsecure worlds to
make a system call. An enclave that wants to make a system
call writes the system call details including its arguments in the
untrusted memory. A proxy thread, running on a separate core,
reads the arguments and performs the system call on behalf of
the enclave. Results are written back to the untrusted memory
from where it can be read by the enclave.

VII. CONCLUSION

This paper demonstrates the critical role of an enclave’s
static memory size on an application’s performance. The
performance slowdown arises from the frequent invocation of
EAUG and EREMOVE instructions. Increasing static memory
reduces these slowdowns but raises the enclave initialization
latency. To address this trade-off, we propose Harmony, a
profile-based optimizer that determines the optimal static
memory allocation to balance the enclave initialization latency
and performance impact.

REFERENCES
[1] Intel, “Intel software guard extensions — intel software,” https://softwa

re.intel.com/en-us/sgx, 2019, (Accessed on 12/14/2019).
[2] G. Ayoade, V. Karande, L. Khan, and K. Hamlen, “Decentralized IoT

Data Management Using BlockChain and Trusted Execution Environ-
ment,” in IRI’18.

[3] L. Chen, J. Li, R. Ma, H. Guan, and H.-A. Jacobsen, “EnclaveCache:
A Secure and Scalable Key-Value Cache in Multi-Tenant Clouds Using
Intel SGX,” in Middleware ’19.

[4] Y. Wang, L. Liu, C. Su, J. Ma, L. Wang, Y. Yang, Y. Shen, G. Li,
T. Zhang, and X. Dong, “CryptSQLite: Protecting Data Confidentiality
of SQLite with Intel SGX,” NaNA’17.

[5] S. Kumar and S. R. Sarangi, “SecureFS: A Secure File System for Intel
SGX,” in RAID ’21.

[6] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptol. ePrint
Arch., vol. 2016, p. 86, 2016.

[7] B. C. Xing, M. Shanahan, and R. Leslie-Hurd, “Intel® software guard
extensions (intel® sgx) software support for dynamic memory allocation
inside an enclave,” in HASP, 2016.

[8] V. Dhanraj, “Fosdem 2023 - gramine library os,” https://archive.fosd
em.org/2023/schedule/event/cc online gramine/, 2 2023, (Accessed on
10/29/2024).

[9] L. Li, L. Gao, and J. Xue, “Memory coloring: a compiler approach for
scratchpad memory management,” in PACT’05.

[10] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas, “Intel® software guard extensions (intel® sgx)
support for dynamic memory management inside an enclave,” in HASP,
2016.

[11] M. Gebai and M. R. Dagenais, “Survey and Analysis of Kernel and
Userspace Tracers on Linux: Design, Implementation, and Overhead,”
ACM Comput. Surv., 2018.

[12] Wikipedia contributors, “Strace — Wikipedia, the free encyclopedia,”
https://en.wikipedia.org/w/index.php?title=Strace&oldid=922720825,
2019, [Online; accessed 17-November-2019].

[13] N. Weichbrodt, P.-L. Aublin, and R. Kapitza, “sgx-perf: A Performance
Analysis Tool for Intel SGX Enclaves,” in Middleware, 2018.

[14] S. Kumar, A. Panda, and S. R. Sarangi, “Sgxgauge: A comprehensive
benchmark suite for intel sgx,” in 2022 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). IEEE,
2022, pp. 135–137.

[15] A. Hasan, R. Riley, and D. Ponomarev, “Port or Shim? Stress Testing
Application Performance on Intel sgx,” in IISWC 2020.

[16] X. Liu, W. Wang, L. Wang, X. Gong, Z. Zhao, and P.-C. Yew,
“Regaining Lost Seconds: Efficient Page Preloading for SGX Enclaves,”
in Middleware ’20.

[17] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schiavoni, P. Felber,
and D. Hagimont, “Everything You Should Know About Intel SGX
Performance on Virtualized Systems,” Proc. ACM Meas. Anal. Comput.
Syst., 2019.

[18] Oracle, “3.7. nested paging and vpids,” https://docs.oracle.com/en/v
irtualization/virtualbox/6.0/admin/nestedpaging.html, (Accessed on
09/11/2021).

[19] K. Nahrstedt, “Cs 423 – operating systems design lecture 4 – processes
and threads,” https://courses.engr.illinois.edu/cs423/fa2011/lectures/lect
35-virt2.pdf, 2011, (Accessed on 09/11/2021).

[20] O. Weisse, V. Bertacco, and T. Austin, “Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves,” in ISCA ’17.

