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Abstract—We use license servers to verify users’ credentials
and to restrict access to proprietary software. Due to logistical
reasons, it is often economical to use third-party servers to
manage licenses. Sadly, users on client machines can mount
sophisticated attacks on the executables and try to circumvent
the license check. This can be used to crack the software,
and thus it is necessary for software writers to prevent such
attacks, which include the use of additional code to check the
integrity of the binary and the control flow. In spite of such
techniques, modern control flow bending(CFB) techniques that
rely on running instrumented binaries on virtual machines
can circumvent such checks and change the behavior of
branches and jumps at runtime. They are however extremely
computationally inefficient. We propose an AI-based technique
that is an order of magnitude faster than the state-of-the-art
and show its efficacy by breaking three widely used license
managers, and five popularly used software. Finally, we propose
a new license management service, F-LaaS, which hides key
functions in the binary. These functions are downloaded at
runtime upon the successful verification of the license. We show
that the mean performance overhead of F-LaaS is negligible:
0.26%.

Keywords-License as a service, Control flow bending, Control
flow attacks, Control Flow Graph, Control Flow Integrity

I. INTRODUCTION

Licensing-as-a-service (LaaS) [1, 2] is the preferred model
for distributing software via the internet today. Independent
software vendors (ISVs) often use the services of third-
party license servers that help them flexibly manage their
licenses. Each client application contacts the license server
(LS) at the time of starting an application, and obtains a
license by supplying the proper credentials. It is the job
of the LS to verify the credentials and enforce the lease
(duration of validity of the credentials). Allowing third
party license managers such as the Amazon AWS License
Manager allows ISVs to exclusively focus on designing their
application, and furthermore a few vendors can specialize
in creating extremely secure license servers using the latest
cryptographic technologies.

Even though this method is the default as of today, there
are some major security loop holes. Unlike a web-based
mechanism such as Ajax [3] where the code is downloaded
at run time with the proviso that the correct credentials are
presented to the server first, in a LaaS based model the full

binary resides on the client’s machine. Its security can be
circumvented, and the license check can be bypassed. Even
with the best cryptographic technologies, the weakest link
in the chain is the fact that the binary on the client machine
can be modified, or its execution can be altered.

In the last 15 years, there has been a lot of research
in this area. Both attack as well as defense mechanisms
have become increasingly sophisticated [4]. Starting from
simple buffer overflow attacks, researchers have designed
increasingly complex attacks such as code injection, and
code reuse attacks [5]. In code injection attacks, we try to
make the application run an alien code and thus cede control
to an attacker, while in code reuse attacks we try to modify
the control flow of an application such that the program
counter jumps to another location in the binary. This new
location contains a piece of code (known as a gadget) that is
beneficial to the attacker. By executing a series of gadgets,
we can implement any logic (shown to be Turing complete);
this includes bypassing the license manager.

In response, we have a plethora of techniques to check the
integrity of a binary by using methods to prevent unnatural
jumps in a program by keeping a shadow return address
stack [4], and methods to verify the correctness and integrity
of call chains [6]. Sadly, all of these techniques rely on the
fact that the processor itself is secure. This assumption fails
to hold when we run the program on a virtual processor such
as the Qemu virtual machine [7], or use binary instrumenters
such as Intel PIN [8]. In these cases we have instruction level
visibility of the program, and we can modify the execution
of individual instructions notably if statements and function
returns.

This is a very powerful technique. By just flipping the
direction of a branch at run time, unbeknownst to the
program, we can change its behavior. For example, we can
just flip the direction of the if statement that checks for a
valid license. This is a very powerful mechanism and is
immune to all known techniques that check control flow
integrity. Moreover, we can disable the license check, and
all other methods that check the integrity of the control
flow itself. These attacks are known as control flow bending
(CFB) attacks [9].

Even though CFB attacks look ominous, they are however



difficult to mount. This is because out of millions of instruc-
tions in a program, we need to find exactly that branch which
checks if a license is valid or not. In modern obfuscated
and stripped binaries, this process is computationally very
inefficient, and is thus considered very time taking and
seldom practical [10].

We make several important contributions in this paper.
1) We characterize the structure of programs that use

license managers, and show that most programs that
use license managers have some common features.
These can be learnt and exploited to mount an effective
CFB attack.

2) We design an AI-based algorithm to prune the search
space of functions in a function call graph. Using our
three pruning heuristics, we demonstrate an average
speed-up of 20X over the nearest competing algo-
rithm [9] for identifying the function that contains the
instructions to invoke the license check routine.

3) We propose a new license management service that
can be used to stop such CFB attacks. The key idea
is that the client possesses a reduced version of the
binary where these key functions are replaced with
ineffectual and erroneous instructions. This prevents
the attacker from getting any benefits even if she
breaks the program. At runtime the code for these
functions is supplied by the license management server
via an encrypted channel if the user possesses valid
credentials. The security checking code then patches
the binary with these small code snippets.

The organization of this paper is as follows. In Section
II, we discuss the relevant background followed by a formal
definition of the threat and security model in Section III. In
Section IV we provide several key insights into the execution
of a binary. This forms the basis of the CFB algorithm
to detect the key functions (contain code to invoke license
checking routine) in a binary, which is described in Section
V. Subsequently, we propose a method to defend against
such attacks in Section VI, and discuss our experimental
setup and results in Section VII. Finally, we conclude in
Section VIII.

II. BACKGROUND: LICENSE MANAGERS AND ATTACKS

In this section, we shall discuss the design and working
of a license manager, and some of the popular attacks on
license managers. Subsequently, we shall discuss control
flow graphs (CFGs), and show their relevance with regards
to this area of research.

A. Design of a License Manager

A license manager (LM) is a dedicated module that
runs locally along with the proprietary binary. Its job is to
communicate the credentials to the license server (LS), and
restrict the execution of the binary if required. As shown in
Figure 1, a license file (alternatively called the password or

key) is passed to the LM, which is responsible for validating
the key in consultation with the LS running on a remote
machine. However, the final decision to grant access to the
secure region is still taken by the LM based on the LS’s
response. This fact is exploited by the attackers to gain
access to the secure regions of the binary.
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Figure 1: Control flow of a license manager.

B. Control Flow Bending Attacks

Control flow bending (CFB) [9] attacks aim to modify
the control flow of a binary with a malicious intent. They
hijack the control flow of the binary, which is then used to
reveal the secrets of the binary or execute an unintended
piece of code: a piece of code that should not be executed
in the absence of a valid key. Based on prior analyses, the
attacker figures out the execution paths that are beneficial
to her, and forces the binary to follow those execution paths
at runtime. Note that there is neither any new code being
inserted nor any new path (in the control flow path) being
carved out. Such CFB attacks are typically mounted with
the help of either a runtime binary instrumentation engine
[8] or a virtual machine that simulates a virtual processor
such as Qemu [7]. Let us next describe two state of the art
CFB attacks: CFDA and CGA.

C. CFDA and CGA

1) CFDA: Agarwal et al. [10] propose two novel tech-
niques to break the security of the license check namely
Control flow deviation analysis (CFDA) and Call graph
alteration (CGA). Both the techniques are based on the CFB
paradigm. They attack the license manager by identifying
and locating those instructions in the binary that are respon-
sible for enforcing the license checks.

Specifically, CFDA executes a binary twice: first with
a valid key and then with an invalid key. The instruction
traces (sequence of instructions executed by the binary)
are collected for both the executions separately and are
compared to find the point of deviation. Recording only
the deviating branch instructions prunes the search space
significantly. Note that there is always some deviation across
runs of the same program because of non-determinism



caused in libraries and memory allocation routines; hence,
the algorithm identifies some additional instructions as well.
Additionally, pruning the instructions corresponding to the
dynamically linked libraries reduces the search space further
by 100X. Subsequently, to break the license check the
authors sequentially alter the behavior of the instructions
found by their deviation analysis technique.

CFDA uses the longest common subsequence(LCS) al-
gorithm to find the deviating branches. This has a runtime
complexity equal to O(n2), where n is the number of branch
instructions left after pruning. This is prohibitive for large
binaries. Additionally, this technique requires access to a
valid license file, which might not be available all the time.

2) CGA: In contrast, CGA forces the binary to traverse
all the paths that were skipped when it was presented with
an invalid license key. This is done as follows. It first creates
a mapping between the assembly code of a binary and an
invalid execution trace. Using this mapping it creates a list
of the paths that were not traversed by the binary, and then
forces the binary to traverse them by changing the direction
of if statements or by skipping functions. Eventually, it
figures out the license checking function and skips the code
that decides to exit the program if the license check fails.
This is a very time intensive process.

The runtime of both the algorithms is very large and
thus these techniques are very slow in practice. Considering
the fact that modern binaries have millions of instructions
[11] out of which 20 − 25% are control flow instructions
(call, jump and return instructions) [11], such methods are
computationally infeasible.

D. Control Flow Graphs (CFGs)

A control flow graph or CFG of a binary is a graphical
representation of a program’s execution using a directed
graph as shown in Figure 2. The nodes in the graph
represent functions and a directed edge between any two
nodes represents a function call from the source to the
destination node. The function call patterns in an execution
reveal several characteristics of the binary and are used by
several defense methods to validate an execution [12].

III. THREAT AND SECURITY MODEL

In this section we define the scope of the threat and the
security model. We are focusing on commercial-off-the-shelf
or COTS binaries whose life-cycle is as follows: A developer
writes the application and ships it to the users in a single
package. To ensure that only valid users are allowed to
run the binary, the developer puts a license manager in the
package. The license manager contacts the license server to
validate the key at runtime.

A. Threat Model

We assume that the attacker has the complete package
with her, which is typically the case for COTS binaries. The

attacker, however, does not have access to the source code
and relies only on the analysis of the binary and the license
manager to get access to the protected parts. Furthermore,
the attacker is free to execute the binary in any environment
she desires, where the explicit aim is to bypass the security
provided by the license manager. If we are running the
binary on a virtual machine like Qemu, then we are assuming
that the behavior of any subset of instructions can be altered.

As shown in related work [10, 9], the license manager
check eventually boils down to a single conditional branch
statement, or a single function call. If we can flip the branch
statement or skip the function call, then we can effectively
break the license. CFB attacks are ideal for such cases. We
present an efficient version of CFB called SmartCFB, which
can prune the search space using heuristics obtained from
the control flow graph of the binary’s execution.

B. Security Model

We aim to create an efficient license manager, F-LaaS, for
COTS binaries that is immune to a binary analysis attack,
such as CFB. We design the license manager as a service,
which is deployed on a server with the following goals:

1) Low network bandwidth: The amount of data com-
municated between the license server (LS) and the
application should be low.

2) Low storage: The license server should not be bur-
dened with storing a large amount of data.

3) No access to the source code: This allows a LaaS
provider to provide secure licensing services to mul-
tiple clients and vendors.

IV. CHARACTERISTICS OF A LICENSE MANAGER

In this section, we look at the characteristics of a license
manager, and propose methods to efficiently identify a func-
tion that contains the license check functionality in a CFG
out of the thousands of functions. We propose an approach
based on clustering, and graph analysis to reduce the search
space significantly. Let us first discuss the process of creating
the CFG, and deriving insights from the generated clusters in
this section. We will discuss the graph analysis based search
space reduction technique in Section V.

A. Creation of the CFG

We use the Valgrind [13] tool to create the CFG for an
execution with an invalid key. This tool instruments the
binary to record when a function is invoked, caller-callee in-
formation, and the execution frequencies of functions. Each
node in the CFG stores the following information: function
name, address, in-degree (number of functions that have
called it), and out-degree (number of functions it has called).
We add an edge from a caller to a callee function. Each
edge is annotated with the following additional information:
source node, destination node, number of times the caller
invoked the callee.
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Figure 2: Call graph showing clusters, license check nodes, high-degree nodes and bridge nodes for the MySQL benchmark

B. Clustering of the CFG

A binary performs multiple tasks such as reading a file
from the disk, accessing the network, solving complex math-
ematical equations, etc. Each of these tasks are extremely
well defined tasks, and have a homogeneous character, where
a set of functions cooperate to fulfill the task. To identify
these cooperating nodes (functions), we need to devise a
method to group functions based on the high level task that
they are associated with. Our algorithm has two steps: map
each node in the CFG (V → set of vertices, E → set of
edges) to a point in a d-dimensional space, and then cluster
the nodes in the graph such that nodes in the same cluster
are related in terms of functionality.

To map the nodes to a d-dimensional coordinate space, we
use the algorithm proposed by Grover and Leskovec [14].
The aim is to ensure that nodes that are close by in the
CFG are also in each other’s neighborhood in the mapped
space. In each iteration of the algorithm, we perform a biased
random walk in the CFG. For example, from node u, we
traverse l nodes in the CFG with a randomly chosen traversal
strategy (S) – the set of nodes are denoted by the set Ns(u).
Now, given a mapping strategy f : V → Rd, we wish to
minimize the error given by:

E(f) = −
∑
u∈V

log [Pr(Ns(u)|f)]

Pr(Ns(u)|f) is the probability that all the nodes in Ns(u)
are in the neighborhood of u in the d-dimensional space
for a given mapping function, f . A simplifying assumption
made in [14] is that Pr(Ns(u)|f) =

∏
v∈Ns(u)

Pr(v|f) .
Additionally, the authors propose an expression for Pr(v|f)

based on existing research on n-grams. This entire process
is run iteratively, and in every iteration the authors apply the
stochastic gradient descent algorithm to perturb f such that
the error is minimized.

Subsequently, we cluster the graph (in the d-dimensional
space) using the K-means algorithm. This algorithm min-
imizes the sum of the squares of distances of each point
from its respective cluster center (centroid). For the purpose
of illustration, we use the Principal Component Analy-
sis (PCA) [15] method to project the points from a d-
dimensional space to a 2-D space.

C. Classification of Nodes and Clusters
After clustering, the groups of functions responsible for

specific tasks show up as distinct clusters of nodes as shown
in Figure 2. The execution begins with the main function
that is a part of a cluster. All the functions in this cluster
are typically invoked by the main function and provide some
auxiliary functionality. For performing larger tasks we call
other functions that initiate these tasks. The nodes associated
with these tasks form their own distinct clusters as shown in
Figure 2. We refer to such nodes that initiate the execution
in a cluster of nodes as bridge nodes.

D. Key Assumptions
Based on the results of clustering, we present our assump-

tions regarding the position of the license check function
with respect to the central hub (cluster that contains the
main function in the CFG). We shall provide some intuitive
reasons here. Subsequently, we shall verify these assump-
tions (2,3, and 4) in Section VII-D.

1) Assumption 1: The license check function or its
wrapper is contained in vicinity of the central hub



primarily because it needs to be called before we
call most of the other functions. This was empirically
observed.

2) Assumption 2: The Euclidean distance of the nodes
from their respective cluster centers closely follows
a normal distribution [16]: N (µ, σ2), where µ is the
mean and σ2 is the variance of the distribution. The
Euclidean distance between the license check node
and the center of its cluster is typically more than the
standard deviation (σ).

3) Assumption 3: The license check node is situated at
the periphery of multiple clusters. We define a score
function (see Section V-B) that captures the distance
of the nodes from multiple clusters.

4) Assumption 4: The call to the license check function
is typically made from a bridge node. Such bridge
nodes have a lower degree (sum of in-degree and out-
degree) as compared to other nodes in their respective
clusters.

V. ALGORITHM TO PRUNE THE CFG

In this Section, we provide an algorithm to prune the
search space such that we can efficiently search for the
function that invokes the license manager. The algorithm
is based on the assumptions listed in Section IV-D.

Figure 4 shows a flowchart of the entire process. The
mapping and clustering phases were explained in Section IV.
The pruning phase consists of three sub-phases: radius-
based pruning, score-based pruning, and degree-based prun-
ing. After the three levels of pruning, we apply the CGA
technique (see Section II) on the pruned graph and try to
bypass the license check. If the license check node is found,
the algorithm terminates. On the contrary, if the license
check node is not found in the pruned graph, the entire
pruning algorithm is repeated with a slight perturbation in
the hyper-parameters, which are used at each level of the
pruning sub-phases. We show in Section VII that the average
number of iterations for convergence is approximately 80.

A. Radius-based pruning

Based on Assumption 2 in Section IV-D, we propose a
radius-based pruning scheme that takes the centers (µj) of
the clusters (Cj) as input and removes the nodes within a k∗σ
radius around the cluster center. Here, k is a tunable hyper-
parameter depending on the number of unwanted nodes we
want to remove. This is mathematically expressed as follows.

G(V,E)
radius−based−−−−−−−−−−→

pruning
G′(V ′, E′) (1)

V ′ =
{
v ∈ V |

[
Σd

l=1(vl − µjl )2
]
> (k ∗ σ)2

}
E′ =

{
(vi, vj) ∈ E | (vi ∈ V ′) ∧ (vj ∈ V ′)

} (2)

B. Score-based pruning

After radius based pruning, we prune the search space
based on Assumption 3 listed in Section IV-D. In this phase,
we assign a score to each of the nodes on the basis of their
proximity to each cluster center. We define the score function
(S(i) : R+ → R+) for node i as:

S(i) =

num clusters∏
j=1

Pr
(
dist(i, µj) ∼ N (0, σ2

j )
)

(3)

Here, Pr
(
dist(i, µj) ∼ N (0, σ2

j )
)

is the value of the pdf
function of the normal distribution with mean 0, and stan-
dard deviation, σj , at the point dist(i, µj). The dist(i, µj)
function yields the Euclidean distance between node i, and
the center of cluster j (µj). Note that the score will be
higher for nodes that are close to all the cluster centers, as
compared to nodes that are located at the periphery of the
CFG. Moreover, based on our assumption in Section IV-D,
this value will be higher for the license check node. Thus, we
define a threshold ζ (tunable hyper-parameter) to prune the
nodes with a score less than ζ (see Figure 3 for an example).
The score-based pruning of the graph is given by:

G′(V ′, E′) score−based−−−−−−−−→
pruning

G′′(V ′′, E′′) (4)

V ′′ = {v′ ∈ V ′ | S(v′) > ζ}
E′′ =

{
(v′i, v

′
j) ∈ E′ | (v′i ∈ V ′′) ∧ (v′j ∈ V ′′)

} (5)

C. Degree-based pruning

The input to this phase of the algorithm is a pruned graph
from the earlier phases. Since we emphasize that the only
crucial nodes in the CFG are those that are in the set Vbridge
(where Vbridge denotes the set of all the bridge nodes), we
want the set of nodes (V ) in the pruned graph (from the
earlier phases) to be a superset of the set Vbridge. We observe
(Assumption 4 in Section IV-D) that all the nodes in the set
Vbridge are characterized by a significantly lower degree (say
< γ) as compared to the degree of the other nodes in the
graph. Thus, we filter out the nodes with a degree greater
than γ. The transformation of the graph after degree-based
pruning is given by –

G′′(V ′′, E′′) degree−based−−−−−−−−−→
pruning

G′′′(V ′′′, E′′′) (6)

V ′′′ = {v′′ ∈ V ′′ | deg(v′′) < γ}
E′′′ =

{
(v′′i , v

′′
j ) ∈ E′′ | (v′′i ∈ V ′′′) ∧ (v′′j ∈ V ′′′)

} (7)

Here the deg (degree) function is the sum of the in-degree
and the out-degree of a node.
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VI. DEFENSE METHOD: F-LaaS: FLEXIBLE- LICENSING
AS A SERVICE

We have created an algorithm to prune the CFG signif-
icantly, and consequently reduce the effort in finding the
function that contains the license check. We shall show in
Section VII that the time it takes to find the license check
function using our SmartCFB technique reduces by 20X as
compared to other state-of-the-art algorithms. This attack
mechanism can prove to be really effective in such scenarios,
and thus there is a need to propose a defense mechanism to
thwart such attacks.

We propose F-LaaS, a novel licensing service that is
immune to our SmartCFB approach, and all the attacks of
a similar genre. The basic idea is shown in Figure 5. We
distribute a reduced binary where some important functions
of the original binary are replaced with nop instructions,
thereby making them ineffectual. Let us refer to them as
O-functions (omitted functions). The aim here is that even
if the attacker is able to circumvent the license check and
gain access to the restricted parts of the application, she
will still not be able to run it the O-functions of the code
will be missing. Furthermore, even if she attempts reverse
engineering, we are limiting the amount of information that
she can gather.

The normal flow of operations is as follows. If the correct
license is presented, then the license server sends the missing
parts of the binary over a secure encrypted channel, and the
license manager (LM) dynamically patches the code after

remote attestation (verification). Most modern Intel proces-
sors have the SGX [17] trusted execution environment that
provides secure execution and remote attestation services. To
ensure that the LM does not leak the patching information it
gets from the server, we run the LM in a secure environment
provided by Intel SGX [18]. SGX is a secure container that
does not allow the code and data to be modified at runtime.
In addition, it ensures that a given process runs in an isolated
secure container and all the traffic between the processor and
memory is encrypted. Even a malicious OS cannot breach
the security provided by an SGX container.

We have several options here. Either we run the entire
application including the LM in the SGX container. This
provides the highest level of security. However, the over-
heads of SGX including attestation have been measured to
be at least 40% [19]. This is prohibitive in most cases; thus,
a better option is to only run the LM and the O-functions in
the secure container after attestation. We shall evaluate all
of these options in Section VII.

The aims are thus three-fold: Handicap the user without
a valid license as far as possible, and ensure that a user with
a valid license can execute the binary seamlessly, however,
she cannot store the code (O-functions) received from the
license server. The third point needs to be ensured, otherwise
the user can patch the binary herself, break the license check,
and get access to the entire functionality.

A. Selection of the O-Functions

To ensure an efficient implementation of F-LaaS, the O-
functions removed from the binary should be small in size
but at the same time should be disproportionately important
in the execution of the binary. To determine these functions,
we start out by considering those functions that are executed
only after the license check is validated. Additionally, we
discard all boilerplate code.

To determine the importance of a function in this set, we
use a standard software engineering metric called cohesion
to identify the functions that are critical to understanding
a program [20]. Let f represent a function, Rin be its in-
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Figure 5: Overview of F-LaaS (shows the working when the license is valid)

degree, and let Rout be its out-degree. The cohesion ν(f)
is equal to Rin/(Rin +Rout).
O-functions have a low cohesion value, which means

that for them Rout/Rin is high. In other words, we want
functions that are invoked relatively infrequently, yet they
invoke a lot of other functions. This means that they have
complex logic embedded in them, and thus if those functions
are removed, it will be hard for an attacker to guess their
functionality, and patch them.

VII. EVALUATION

A. Benchmark Details

Table III shows the benchmarks used for the evalua-
tion. These include four open source license managers,
two versions of MySQL (code differs significantly between
them), Nginx (secure web server), and a commercial Linux
based application that does binary analysis (name cannot be
disclosed). For the license managers, we bundle them with
synthetic applications that have network, file, and disk based
system calls. The four applications have in-built license
managers. For MySQL, we capture the CFG between issuing
a command and its response.

B. Experimental Setup

We execute our benchmarks on an Ubuntu Linux 18.04
machine, with 32 GB of memory, 8 Intel i7 cores, and 1TB
of disk space. We use Intel PIN version 3.7 [8] and Valgrind
(Callgrind) (version 3.4.1) [13] to get the instruction trace of
the benchmarks. Intel Pin was also used to break the security
check in the binary by inserting a direct jump instruction
at the relevant place. Java applications were converted to
an x86 binary using the GNU compiler for Java (gcj) [21].
We disabled ASLR during the experimentation. Some recent
work [22] can be leveraged to figure out the random offsets
that ASLR adds to addresses; this is orthogonal to our
technique.

C. Hyper-parameter Tuning

In this Section, we explain the tuning of the hyper-
parameters required in our pruning algorithm.

Hyper-parameter Description
d Dimensions of the space to which nodes are projected
C Number of clusters for K-means
k Hyper-parameter for the radius-based pruning phase
ζ Hyper-parameter for the score-based pruning phase
γ Hyper-parameter for the degree-based pruning phase

Table I: Description of the hyper-parameters used in the
SmartCFB algorithm

As explained in Section V, the five hyper-parameters (see
table I) control the size of the final pruned CFG. Our aim
is to find the values of these hyper-parameters such that we
can prune the size of the search space as much as possible.

As we decrease k or ζ, the size of the pruned CFG goes
up (see Section V). In comparison the number of nodes in
the CFG increases as we increase γ. We start with small
values for d, C, −k, −ζ and γ such as 2, 2, -10, -10 and
1 respectively. This will result in a very small pruned CFG
(without the license check node). Our aim is to increase
the size of the pruned CFG, conservatively, till we find the
license check node inside the pruned CFG (validated using
CGA [10]). To eliminate redundant work, we never check
the presence of the license check instructions in the same
function twice.

Using these initial values of the hyper-parameters, we
increase each of them by adding small randomly generated
values to each hyper-parameter in every iteration. This will
result in an increase in the size of the final pruned CFG.
Eventually, the pruned CFG will contain the license check
node. It typically takes 20-35 iterations to find the license
check node.
A brief description of this process is shown in Algorithm 1.

The final values of hyper-parameters (d, C, k, ζ, and
γ) are shown in Table II. We observe that pruning gives
reasonable results when the nodes are mapped to a d-
dimensional space, with d being in the range of 80 to 125.
A higher dimension value allows for better flexibility in the
representation of the nodes. We also note that the number
of clusters for MySQL benchmarks are higher compared to



Algorithm 1
1: Input: Let the initial set of hyper-parameters be θ0.

Instead of k and ζ we store −k and −ζ in θ0.
2: Output: θn is the value of the hyper-parameters in the
nth iteration.

3: for n = 1, 2 . . . , N do
4: Generate a random perturbation vector ∆n ∈ R+5.
5: Update the values of the hyper-parameters:
6: θn+1 = θn + ∆n

7: If SmartCFB is successful then break ;
8: end for
9: return θN+1

others. This is because of the higher (1.8 X) number of nodes
and edges in its CFG.

D. Validation of Assumptions

In this section we empirically validate the assumptions
made in Section IV-D.

Validation of Assumption 2:
To establish our assumption 2 in Section IV-D, that the
license check node is roughly 1-1.5 standard deviations apart
from its cluster-center (in most cases), we report the distance
of the license check node from its cluster-center in terms of
the number of standard deviations in Table II. The distance
(measured in terms of standard deviations) is in the range of
1 to 3.53, with the exception of MySQL 5.7 (with a value
of 0.59). This is because of the large number of auxiliary
functions.

Benchmarks Dimension
(D)

Clusters
(C)

k (License check
node distance)

Score (ζ)
(percentile)

OpenLicense [23] 100 5 1.6 (1.62) 4.32 (98)
LicenseManager [24] 80 15 1.4 (1.41) 1.4 (84)

License3j [25] 100 10 3.5 (3.53) 4.14 (96)
License4j [26] 100 5 0.9 (1.1) 1.4 (64)

MySQL 5.7 [27] 100 17 0.58 (0.59) 6.9 (52)
MySQL 8.0 [27] 125 25 0.97 (1 ) 0.02 (72)
Nginx [28, 29] 100 7 1.08 (1.1) 1.66 (73)

Linux SW 100 15 1.2 (1.3) 2.7(85)

Table II: Table showing the final values of the hyper-
parameters. Percentile of the license check node is shown
along with the score threshold ζ. The value of γ for degree
based filtering was set to 10 for all the benchmarks.

Validation of Assumption 3:
To verify our assumption, that the license check node is
situated at the periphery of multiple clusters, we report
the percentile of the score (ζ) assigned to the license
check node in Table II. A high value of ζ for a node
indicates that the node is closer to a large number of
clusters. We observe that the percentile of the score for
the license check node is high (64-98%) for most of
the benchmarks, which indicates that it is much closer
to the cluster-center than the other nodes in the CFG.

MySQL 5.7 is an exception, where even though the score
is relatively higher (6.9), the percentile value is low (52%)
owing to the large number of auxiliary functions in MySQL.

Validation of Assumption 4:
To validate our assumption that the bridge nodes have a
lower degree (sum of in-degree and out-degree) as compared
to other nodes in their respective clusters, we show the
relative ranking (in terms of percentiles) of the degree of the
license check node in Table III . The value of the percentile
is low (3.5-6.2%), which indicates that roughly 95% of the
nodes in the CFG have a greater degree, which validates our
assumption.

Benchmarks

Rank of the
degree of the

license check node
(percentile)

Cohesion of
O-function

(Cohesion of cluster)

OpenLicense [23] 3.5 0.33 (0.63)
LicenseManager [24] 4.2 0.1 (0.52)

License3j [25] 3.7 0.11 (.53)
License4j [26] 5.6 0.32 (.7)

MySQL 5.7 [27] 3.9 0.09 (0.6)
MySQL 8.0 [27] 4.3 0.2 (0.7)
Nginx [28, 29] 6.2 0.22 (0.43)

Linux SW 5.7 0.3 (0.73)

Table III: Table showing the rank of the degree of the license
check function (percentile), and mean cohesion values of O-
functions.

E. Results for SmartCFB
SmartCFB reduces the search space (measured in terms

of the number of functions we try to break) by an average
of 22X (range:3-75X) as shown in Figure 6. The baseline
uses CGA (see Section II).
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Figure 6: Performance comparison of CFB vs SmartCFB
(mean reduction in the number of functions is 22.3X)

As can be seen in Figure 6, we do the most pruning for
OpenLicense, and MySQL 5.7: 75X and 25X respectively.
This result can be inferred from Table II. In OpenLicense
manager, the score-based pruning removes the highest num-
ber of nodes, since the score of the license check node is at
the 98th percentile.



For MySQL 5.7, a higher pruning is achieved despite the
low values of k (radius-based filtering) and ζ( score-based
filtering) because the number of high-degree nodes constitute
a major fraction of its CFG and they are filtered out in the
degree-based filtering phase. In contrast, we achieve only a
3X reduction for License4j because of low values of k, and
ζ, which result in a lesser degree of pruning. Also, a high
value of the degree percentile means that there are many
lower degree nodes in its CFG, thereby resulting in a lesser
amount of pruning.

F. Selection of the O-function(s)

As explained in Section VI-A, we use a metric called
cohesion to decide the function(s) that we need to remove
to create a reduced version of the binary. A tradeoff exists
between the number of functions we decide to remove, the
performance overheads, and the amount of information we
remove from the binary. This is a hard problem.

In the software engineering community, researchers have
been working on program understanding for the last
40 years. We use the classic results by Soloway and
Erhlich [30], which say that most programmers (novice
and expert) understand programs (or reverse engineer) by
primarily looking at functions that show the overall flow
of actions. This is referred to as a plan. Their paper and
later work on top-down program understanding advocates
the view that the functions that determine the flow of the
program (sequence of work that needs to be done) carry the
maximum amount of information.

We thus need to verify if the O-functions that we remove
as per our low-cohesion metric satisfy the criteria laid down
by Soloway and Erhlich. This requires manual analysis of
the source code. Our criteria for choosing an O-function is
that it should have the lowest value of cohesion in its cluster,
and the total number of instructions in its forward slice
should at least be 5000. We then analyzed the source code
of the O-functions that we obtained, and in every case we
found that the code significantly determined the subsequent
plan of execution.

G. Evaluation of the Performance of F-LaaS

In this section, we discuss the performance overhead of
a binary executing with F-LaaS. We execute the license
check code within a secure SGX enclave. In addition,
we also execute the code to fetch O-functions, and patch
them within the enclave. The baseline system does not use
SGX. To calculate the performance overhead, we simulate
the benchmarks on a cycle accurate architectural simulator,
Tejas [31]. We ignore the network overheads: time it takes
to fetch the O-functions (their encrypted versions can be
locally cached).

Figure 7 shows the performance overheads of F-LaaS
when we are running the license check function in the
SGX enclave. The overhead is defined as the fraction of

the additional execution time of F-LaaS as compared to the
baseline implementation. This is dependent on the slowdown
induced by running parts of the code in SGX (roughly 20-
30% in most cases), and the size of the license manager
and O-functions. We observe from Figure 7 that the average
performance overhead is between 0-40% for the license
manager by itself, and the slowdown induced due to the
O-functions is just 0.26% on an average.
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Figure 7: Comparison of performance overheads while run-
ning O-functions within an SGX enclave

This can be understood better from Table IV. We exe-
cute the benchmarks with Valgrind to get the number of
instructions executed by the license check module and the
O-functions. The size of our O-functions is roughly between
5000 and 25,000 instructions, which is minimal as compared
to even the size of the license manager that can execute up
to 2 billion instructions.

Since running the license manager on SGX is not a neces-
sary feature in our design, we only consider the overhead of
patching O-functions as the real overhead, which is 0.26%.

Benchmark License check
#instructions

O-Functions
#instructions

OpenLicense 3,938,155 8,481
LicenseManager 1,256,847,478 15,194
License3j 1,640,145,369 19,135
License4j 1,759,762,658 20,673
MySQL5.7 1,735,905 15,446
MySQL8 2,642,487 24,757
Nginx 13,427 5,158
Linux SW 41,626 7,331

Table IV: Table showing instructions executed by the license
check function and the O-functions selected by F-LaaS.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we show that software-based defense meth-
ods used to control access to the protected region of a binary
are not sufficient and can be broken with the SmartCFB
technique. We reduce the search space and hence improve
the performance by an average of 22X in breaking 8



widely used programs: open source and proprietary. To
protect against such attacks we need hardware support to
ensure tamper-proof execution. We have proposed to use
the Intel SGX [18] trusted execution environment in this
paper. However, an inherent drawback of such technologies
is that they are limited in terms of the memory size of
the protected region. This causes a significant slowdown
in the performance of the application as shown in Section
VII. To solve this problem, we propose F-LaaS, an efficient
License-as-a-service mechanism, which identifies important
functions, fetches (or decrypts) their code at runtime and
executes them in a secure container with a performance
overhead limited to 0.26 %.

In this paper we proposed the concepts underlying F-
LaaS and showed a proof-of-concept. In the future, we
would like to do a more in depth study of the design
space of binary patching mechanisms that run in secure
execution environments, and create a version of F-LaaS
that is significantly more flexible, performance and power
efficient.
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