
Survey of Spin-based Synchronization Mechanisms
Sandeep Kumar

School of Information and Technology
Indian Institute of Technology Delhi

New Delhi, India
sandeep.kumar@cse.iitd.ac.in

Abstract—Synchronization mechanisms such as Locks, are
used extensively in providing data consistency guarantees in a
shared and distributed environment. These locks have their own
characteristics in terms of design and waiting policies and have
their associated pros and cons. The performance of these locks
is of utmost importance, as in a production setting they handle
millions of concurrent access to shared data. Because of this
the selection of lock for a particular use case needs to be done
carefully. There are different variants which can be used along
locks, like Composite and Fast-path properties. Composite reduces
the latency at a single object in high contention whereas, Fast-
path allows for quick lock acquire during low contention. We
define high and low contention in section I

We analyze different type of spin-based locks in terms of
their performance in low to high contention environment and
discuss their keys design points which differentiate them from
one another, followed by how these designs aspects affects their
performance. We primarily focus on the performance of TAS,
CLH Composite , Composite and CLH Fast-path lock [1]. Apart
from these we also take a look at TTAS Lock, CLH Lock [2],
[3] and MCS Lock [4] . By experimentation we try to quantify
the performance difference among these locks based on different
metrics and justify this based on their design.

Index Terms—TAS Lock, TTAS Lock, MCS Lock, CLH Lock
,Composite Lock , Lock Performance, Fast Path Lock.

I. INTRODUCTION

Synchronizations method have been used extensively since
the dawn of shared memory among processes or threads.
Shared memory is used for inter process communication to
speed up a given task by creating a logical division of work.
Recent trend, where a single core is reaching its peak per-
formance and hardware manufactures are resorting to adding
more cores to make the chip faster, has brought the problem
of synchronization (cache coherency) among CPU cores. The
advent of cloud computing and its popularity has moved the
traditional computing from one’s local machine to a data center
which is shared by thousands of users and handles requests in
order of millions. It is of utmost importance that data of one
of the user should be protected from other. Hence, the design
of these locks should consider performance and scalability in
mind, as using a non-scalable locks create issues when the
number of threads crosses a limit. [5].

Locks can be classified into spin-based or sleep-based
category. In former, the threads waiting to acquire the lock
just keeps spinning on the lock to check if it has become free
or not. It will try to acquire the lock as soon as it becomes
free. Here the the waiting thread wastes CPU cycles as during
the spinning phase it is not doing any work. The most simple

version of this is a TAS locks, where the threads keeps testing
a atomic lock, as shown in the listing 1 in appendix. It may or
may not succeed as some other thread might set the lock before
and takes the lock. There is chance that a particular thread
might starve, i.e. it might never get a lock in high contention
situation. Hence, TAS is NOT a starvation free lock, but CLH
and MCS lock which are queue-spin based locks are starvation
free. More details on these locks can be found in the appendix
A.

In sleep based locks threads waiting for a lock does not
keep waiting for it to become free, instead it registers itself
with the lock and goes to sleep. When the thread which has the
lock is done with it, release the lock and awakens the threads
waiting for the lock. Based on the scheduling algorithm, a new
thread will get the lock and rest all will go back to sleep. This
saves a lot of CPU cycles are other process gets more time to
run, as waiting threads are sleeping and not scheduled.

It seems like the sleep based locks are ideal candidates as
they save the resources. However, sleep based locks are slow
when compared to the spin based locks as there are multiple
context switches involved. Therefore, if we expect a lock to be
released in a time less than two context switches time, we go
for spin based locks otherwise we opt for sleep based locks.
In this paper we focus on spin based locks which are ideal
when the contention is low and the size of critical sections of
thread is small.

We evaluate the performance of the lock in high and low
contention. A high contention is a situation where more than
one thread is trying to acquire the lock. The number of threads
that can run at one time, depending on the number of cores in
the system is the upper limit on the contention [6]. Similarly,
a low contention time is defined when a thread get a chance
to run alone, without anyone competing for the lock at that
particular time.

These locks can be augmented with properties like Compos-
ite and Fastpath, which improves the performance of locks in
certain conditions. Composite property of the locks is typically
used in queue-based locks to reduce the contention at the tail
node. We compare the performance of CLH and CLH Com-
posite lock in section III-F to see the effect of this property
and show that indeed composite properties help improves the
performance in high contention scenarios. Fast-path property
of locks specify a ”fast-path” which the threads can take in
case of low contention. We evaluate the performance of CLH
and CLH Fast-path in section III-D and show that when the

0 5 10 15 20 25
Number of Threads

0

200

400

600

800

1000
Ti

m
e

in
 m

illi
se

co
nd

s
CLH Composite Lock
CLHFast Lock
Composite Lock
TAS Lock

Fig. 1. Time to finish operation using Locks for 25 threads. This is dominated
by lock acquire time as can be seen in figure 3. Each doing 10 operations.
Average of 100 runs.

contention is low the performance improves by approximately
10% than the corresponding ”non-fast-path” version.

II. EXPERIMENTS AND EVALUATION

All of these locks have different characteristics. Some are
easy to implement, but face too much contention on a single
variable, others are starvation free but involves complex lock
acquire steps. So makes too many read calls to a remote
object variable in NUMA. We use different metrics for the
comparison of locks to make a fair comparison.

1) Average lock acquire time: The performance of lock is
of utmost importance, hence we compare the average
lock acquire time for different locks, under different
scenarios. Specific details can be found in the sections
III-B - III-F.

2) Write vs Read Calls (Cache Coherence): Cache Invalida-
tion because of unnecessary writes to a shred variables.
Any writes to shared variables by a thread forces other
cores to invalidate their local cached copy (even if the
same value was written) and then re-read the data.

3) Contention. To measure the contention, we use miss-rate
heuristics as a measure of contention in the system. [7].

4) Remote NUMA calls: In case of NUMA architecture,
calls to remote memory and caches are costly compared
to calls made within the local socket. We use perf c2c
tool to measure the number of remote calls made.

During experiments we saw that time taken during lock
release is approximately similar for all the locks as it involves
few deterministic steps. Hence, we focus on lock acquire time
as the basis for lock comparison. Behavior of throughput of the
locks is similar to lock acquire (figure 1), as the lock acquire is
the takes the most time. Critical Section is a counter increment,
and lock release is a few deterministic steps.

A. Experimental Setup

For our experiment evaluations we are using a machine
with 48 cores configured with 2 NUMA nodes, each having

24 cores. It is configured with 96 GB of memory which
makes sure that all the experiments are done in memory
only and there is no swapping involved. It is running Centos,
Linux kernel version 3.18. All the lock implementation is
done in Java which is taken from [8]. To measure the time
taken to acquire the locks we rely on the tools provided
by Java to measure times before and after a function call.
To measure the remote socket calls (memory or cache) and
highest contended cache line, we use the tool perf c2c [9].
Python is used to plot the graphs using matplotlib. In some
of the plots the x-axis index starts from 0. In the interest of
time, we add a zero to every data at index 0 so the actual
result starts from x=1. Complete Code can be found here:
https://github.com/sandeep007734/Lock-Comparison

1 vo id run () {
2 b a r r i e r . a w a i t () ;
3 f o r (i n t i = 0 ; i < RUNS; i ++) {
4 l o c k a c u i r e ()
5 c o u n t e r = c o u n t e r + 1 ;
6 l o c k r e l e a s e () ;
7 }
8 }

Listing 1. ”Critical Section of the threads.”

The critical section protected by these locks is small and
involves incrementing a shared variable as shown in the code
listing 1. The value of this variable is used to check the
correctness of lock implementation. Threads try to acquire the
lock a fixed number (varies per experiment) of time to do
operation. We use barrier to ensure that after creation all of
the threads starts from the same point at same time. As these
locks have different characteristic, to test their performance
different settings were used. For example, to study the effect
of fast-path we keep the number of threads ¡ 10, as its effect
can be seen during low contention only. We test for maximum
of 200 and 500 threads, as to see the effect of contention,
thread count greater than number of cores in the machine is
sufficient [6].

B. OS Jitter

Measuring the performance of “performance critical com-
ponents” on a general purpose Operating system is affected
by jitter in OS because of system calls, context switches,
interrupts and other processes running [10]. There are different
ways to handle this. First is using a light weight kernel [11]
where kernel operations are limited. However, they limit the
capabilities of the operating system and can be used for
specific applications only. Advent of multiprocessor and multi
core chips allow a way to handle this by dedicating a core
to handle OS related activities which affects the rest of the
operation in the minimal way [12]. Also, Non determinism
present in the scheduler makes the time to acquire a lock vary
by a factor 10-50.

To limit the effect of OS jitter, we average out the reading
of a particular metric recorded over multiple runs. Running
the lock in a continuous loop allows the system to reach a
stead state [13].

https://github.com/sandeep007734/Lock-Comparison

III. RESULTS

A. TAS vs CLH Composite vs Composite vs CLH Fast-Path
Lock

We compare the performance of TAS, CLH Composite,
Composite and CLH Fast-Path lock for different number of
threads. The performance comparison for them can be seen in
the figure 3.

The performance of TAS lock remains somewhat the same
throughout the experiment. This is because of its simple
implementation which does not add much over-head going
from 25 to 200 threads.

Composite locks have an waiting array defined, where
threads wait before trying to acquire the locks. The idea is
that having a waiting array, the access at the tail for queue
based locks is reduced in case of high contention. The size of
the array is a configurable parameter, which can be changed
as per the use case. We experimented with different array size
as can be seen in the figure 2. If we use a small size array, the
thread will compete for a position in the array and even though
the system is capable of handling more threads, threads equal
to the size of array will only get to compete for lock and this
will impact the lock acquire time. If we use a large value for
array size then most of the threads will get to compete for the
lock, essentially defeating the purpose of using a Composite
lock. Hence there has to be a balance between the array size
and the contention.

1 10 20 50 80 100
Array size

0

2000

4000

6000

8000

10000

12000

Ti
m

e
in

 M
illi

se
co

nd
s

Time taken

Fig. 2. Performace of Composite Lock on varying the array size. 100 threads
doing 10 operations each. Average of 100 runs.

Comparing variants of CLH, for 25 threads, the performance
of Composite and CLH Composite is approximately 5x-7x
slower than the CLH Fast-path. This is because of extra
overhead associated with composite forms of locks, where
threads first contend for place in waiting array. In CLH-
Fastpath, some of the threads can take fastpath to reduce
the lock acquiring time. However, as the number of thread
increases, the performance of CLH-Fastpath lock is order or
magnitude worse than its Composite counterparts because of
the increased contention at the tail . Also, when 200 threads
are contending for lock, it is unlikely that any of them takes
the fast-path.

We compare the performance of CLH with CLH Composite
and CLH-Fastpath in section III-F and III-D respectively to get
more understanding on the property of Composite and Fast-
Path properties.

B. TAS vs TTAS

TAS (Test and Set) and TTAS Test- Test and Set are most
simple synchronization mechanism compared to other locks.
However, they are not starvation free and there is severe
contention at a single memory object when many threads are
trying to acquire the lock.

The number of writes done in case of TAS is 20x more than
TTAS (figure III-B), as each thread while waiting, writes the
value true or 1 on the lock and if the old value was false it gets
the lock. Because of these writes, in case of multiprocessor,
the cache is invalidated at other cores and the value has to be
fetched from the main memory again. This increases traffic
on the interconnect of memory to cores. TTAS on the other
hand, before writing a true on the lock checks whether it
is false or not. It writes only if the value is false. It might
happen that some other thread writes runs away with the lock
(sets the value to 1 before this thread gets a chance), between
the checking and the writing. Checking the value of the lock
before writing it, reduces the number of cache invalidation.

As seen in the figure 4, where bar chart represents the
number of write calls, and line graph measures the contention
on the ”highest” contended cache line as reported by the tool
perf. We can see that with increase in number of threads from
1 to 200, write calls increases to 2217 for TAS and to 122 for
TTAS and the contention increases by a factor of 7 for TAS
and remains same for TTAS. This result in approximately 5x
performance overhead on lock acquire time as seen in the
figure 5.

C. CLH vs MCS

CLH and MCS lock are both queue based spin lock, which
guarantees freedom from starvation. Altough similar in nature,
as mentioned in the appendix A, the difference is that CLH
Lock wait on a remote field, which belongs to its predecessor
in the queue and MCS waits on a local field, which is modified
by its predecessor when the lock is released. Using the perf-
c2c [9] tool we measure the number of remote calls (calls to
another socket) made to during the a program execution by
varying the number of threads. The results are sown in the
figure III-C. We can see that number of remote calls made by
the program while using CLH lock is higher compared to that
made when using MCS lock by a factor of 2 for 500 threads.
These remote costs are costly compared to calls made to local
socket [14], because of which the average lock acquisition
time increases by a factor of 4 for 25 threads, and by order
magnitude for 200 threads as seen in the figure 6.

D. CLH and CLH Fastpath Lock

The main idea behind a fastpath lock is to acquire the lock
quickly when the contention is low. We compare the perfor-
mance of locks speed in environment, where the contention is

0 5 10 15 20 25
Number of Threads

0

5000

10000

15000

20000

25000

30000

35000

40000

Ti
m

e
in

 n
an

os
ec

on
ds

CLH Composite Lock
CLHFast Lock
Composite Lock
TAS Lock

(a) Performance for 25 threads.

0 10 20 30 40 50
Number of Threads

0

20000

40000

60000

80000

100000

120000

140000

Ti
m

e
in

 n
an

os
ec

on
ds

CLH Composite Lock
CLHFast Lock
Composite Lock
TAS Lock

(b) Performance for 50 threads.

0 20 40 60 80 100
Number of Threads

0

200000

400000

600000

800000

1000000

1200000

Ti
m

e
in

 n
an

os
ec

on
ds

CLH Composite Lock
CLHFast Lock
Composite Lock
TAS Lock

(c) Performance for 100 threads.

0 25 50 75 100 125 150 175 200
Number of Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
in

 n
an

os
ec

on
ds

1e7
CLH Composite Lock
CLHFast Lock
Composite Lock
TAS Lock

(d) Performance for 200 threads.

Fig. 3. Average lock acquire time: Performance comparison of TAS, CLH Composite, Composte and CLH Fast-Path lock for different number of threads.
Each thread doing 10 operations. Average of 100 runs.

10 50 100 200
Number of Threads

0

500

1000

1500

2000

Nu
m

be
r o

f W
rit

e
Ca

lls

1 16
157

2217

1 34
118 122

Number of Write calls for TAS and TTAS Lock

10

15

20

25

30

35

40

Hi
gh

es
t C

ac
he

 L
in

e
Co

nt
en

tio
n

Pe
rc

en
ta

ge

TAS Store Calls
TTAS Store Calls
TAS Cache Contention
TTAS Cache Contention

Fig. 4. Increase in Write calls with increase in the number of threads between
TAS and TTAS Lock. Bar chart showing number of write calls made and the
line chart showing the highest contention cache line.

low in the beginning and then gradually increase in number.
The results are shown in the figure 7 where the number of
threads are increases from 1 to 10. Initially we see the fast-path
lock working better than the CLH lock by 10%, however, the

0 25 50 75 100 125 150 175 200
Number of Threads

0

100

200

300

400

500

600

Ti
m

e
in

 n
an

os
ec

on
ds

TAS Lock
TTAS Lock

Fig. 5. Average lock acquire time: TAS Lock as compared to TTAS Lock
for 200 threads each doing 10 operations. Average of 100 runs.

performance becomes similar during high contention as both
lock follows the same code path. In fact fast-path is doing little
bit of extra work of checking every time whether a ”fastpath”
lock acquisition is possible or not.

10 50 100 200 500
Number of Threads

0

2000

4000

6000

8000

10000

12000

14000

Nu
m

be
r o

f R
em

ot
e

Ca
lls

382

1615

3045

7515

14871

370 814

3752

2602

6956

CLH Remote Calls
MCS Remote Calls

(a) Comparison of Remote calls (including cache and memory)
made by program when using CLH Lock and when using MCS
Lock for varying number of threads.

0 10 20 30 40 50
Number of Threads

0

20000

40000

60000

80000

Ti
m

e
in

 n
an

os
ec

on
ds

CLH Lock
MCS Lock

(b) Performance Comparison of CLH Lock and MCS for Lock
for upto 50 threads.

0 25 50 75 100 125 150 175 200
Number of Threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m

e
in

 n
an

os
ec

on
ds

1e7
CLH Lock
MCS Lock

(c) Performance Comparison of CLH Lock and MCS for Lock
for 200 threads. Performacne of CLH keeps worsening going
forward.

Fig. 6. Comparison of Performance of CLH and MCS Lock.

1 2 3 4 5
Number of Threads

0

100

200

300

400

500

600

700

Ti
m

e
in

 N
an

os
ec

on
ds

CLH Lock Time
CLH Fast Lock Time

(a) Performance comparison of CLH and CLH Fastpath Lock.
Time to acquire locks with changing contention. CLH Fastpath
lock performs better when contention is low.

0 10 20 30 40 50
Number of Threads

0

20000

40000

60000

80000

100000

120000

Ti
m

e
in

 n
an

os
ec

on
ds

CLHFast Lock
CLH Lock

(b) Performance comparison of CLH and CLH Fastpath Lock.
Performance remains same with increase in contention as the
lock is seldom free for the thread to take fastpath.

Fig. 7. CLH VS CLH Fastpath Lock

E. Composite and Composite Fastpath Lock

In case of Composite and Composite Fast-path we seee
similar patterns as seen in between CLH and CLH-Fastpath as
seen in the figure 8. When the contention is low, in fast-path
the lock acquire time is 4x faster (fig. 8 part (a)). However,
as the contention increases, performance of both remains the
same, (fig. 8 part (b)) as it is unlikely that any thread gets to
take the fast-path.

F. CLH and Composite CLH Lock

Composite locks are used to reduce the contention on the
lock itself, as the thread first fight for a place in array which
can acquire lock. To see the effect of using composite locks
we use the tool perf c2c which, for a program, gives total
hits on every cache line used. For MCS and CLH, during
high contention, the cache line storing the tail value will have
the highest contention and therefore the highest amount of hit
percentage. So we compare this value in both of the locks
to see how much the hit percentage goes down by using
composite lock.

IV. CONCLUSION

In this paper we have explored different variations of Spin
based locks. We have seen simple locks such as TAS and
TTAS which do not guarantee fairness is faster compared to
queue-based spin locks such as MCS, CLH and Composite
Locks which guarantees starvation freedom. We saw the TAS
Lock causes cache invalidation because of the lock write at
every wait loop, which is reduced in TTAS lock as can be
seen in the figure 4. This is because in TTAS the write is only
done after checking the current value of the lock.

Similarly when comparing MCS and CLH lock, in a NUMA
machine with 2 NUMA nodes, we observe (figure 6) that
CLH performs order of magnitude worse than MCS because
of remote calls made by it to check the state of its predecessor.
We also suspect that performance of CLH can be because of
unoptimized implementation and can be improved upon. This
part needs further exploration.

Finally we explore the performance when using Composite
and Fast-pat properties. In composite, we saw that, when the
contention is high, a waiting queue helps in the performance
of the locks as the thread first competes for a position in the
waiting array and after that competes for lock acquirement.
Fast-path helps when the contention is low, and the thread
can skip the overhead associated with queue-based locks and
take a ”fast-path” in code for lock acquisition.

We see that all of these locks have different properties and
care should be taken before using them for a particular work-
load. Most of the language abstract away these details behind
an interface to ease the process of development. However,
selecting a wrong lock can lead to scalability and performance
issues.

REFERENCES

[1] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[2] T. Craig, “Building fifo and priority-queuing spin locks from atomic
swap,” tech. rep., 1993.

[3] P. S. Magnusson, A. Landin, and E. Hagersten, “Queue locks on
cache coherent multiprocessors,” in Proceedings of the 8th International
Symposium on Parallel Processing, (Washington, DC, USA), pp. 165–
171, IEEE Computer Society, 1994.

[4] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable syn-
chronization on shared-memory multiprocessors,” ACM Trans. Comput.
Syst., vol. 9, pp. 21–65, Feb. 1991.

[5] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich, “Non-
scalable locks are dangerous,” Ottawa Linux Symposium (OLS), pp. 1–
12, 2012.

[6] V. J. Marathe, M. Moir, and N. Shavit, “Composite abortable locks,”
in Proceedings 20th IEEE International Parallel Distributed Processing
Symposium, pp. 1–10, April 2006.

[7] S. Blagodurov, A. Fedorova, S. Zhuravlev, and A. Kamali, “A case
for numa-aware contention management on multicore systems,” in 2010
19th International Conference on Parallel Architectures and Compila-
tion Techniques (PACT), pp. 557–558, Sept 2010.

[8] “Art of Multiprocessor Book Website.” https://booksite.elsevier.com/
9780123705914/?ISBN=9780123973375. [Online; accessed 27-10-
2017].

[9] J. mario, “C2c - false sharing detection in linux perf.” https://joemario.
github.io/blog/2016/09/01/c2c-blog/, 2016. [Online; accessed 27-10-
2017].

[10] P. De, R. Kothari, and V. Mann, “Identifying sources of operating
system jitter through fine-grained kernel instrumentation,” in 2007 IEEE
International Conference on Cluster Computing, pp. 331–340, Sept
2007.

[11] J. Laros, C. A Segura, and N. Dauchy, “A minimal linux environment
for high performance computing systems,” 04 2006.

[12] P. D. V. Mann and U. Mittaly, “Handling os jitter on multicore multi-
threaded systems,” in 2009 IEEE International Symposium on Parallel
Distributed Processing, pp. 1–12, May 2009.

[13] J. F. Barhorst and R. W. Seelye, “Ada run-time system contention
measurement,” in Proceedings of the Conference on TRI-ADA ’90, TRI-
Ada ’90, (New York, NY, USA), pp. 334–338, ACM, 1990.

[14] T. Brown, A. Kogan, Y. Lev, and V. Luchangco, “Investigating the
performance of hardware transactions on a multi-socket machine,” in
Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’16, (New York, NY, USA), pp. 121–132,
ACM, 2016.

https://booksite.elsevier.com/9780123705914/?ISBN=9780123973375
https://booksite.elsevier.com/9780123705914/?ISBN=9780123973375
https://joemario.github.io/blog/2016/09/01/c2c-blog/
https://joemario.github.io/blog/2016/09/01/c2c-blog/

1 2 3 4 5
Number of Threads

0

200

400

600

800

1000

1200

1400

Ti
m

e
in

 N
an

os
ec

on
ds

Composite Lock Time
Composite Fast Lock Time

(a) Performance comparison of Composite and Composite Fast-
path Lock. Performance remains same with increase in con-
tention as the lock is seldom free for the thread to take fastpath.

0 10 20 30 40 50
Number of Threads

0

100000

200000

300000

400000

500000

Ti
m

e
in

 n
an

os
ec

on
ds

Composite Fastpath Lock
Composite Lock

(b) Performance comparison of Composite and Composite Fastpath
Lock. Performance remains same with increase in contention as
the lock is seldom free for the thread to take fastpath.

Fig. 8. Composite VS Composite Fastpath Lock

0 10 20 30 40 50
Number of Threads

0

20000

40000

60000

80000

100000

120000

140000

Ti
m

e
in

 n
an

os
ec

on
ds

Composite Lock
CLH Lock

(a) CLH vs CLH Composite. CLH Lock performs better in low
contention because of extra overhead associated with CLH Composite
Lock.

0 20 40 60 80 100
Number of Threads

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Ti
m

e
in

 n
an

os
ec

on
ds

Composite Lock
CLH Lock

(b) As the contention increase the performance of CLH and CLH
Composite Locks become similar.

0 25 50 75 100 125 150 175 200
Number of Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e
in

 n
an

os
ec

on
ds

1e7
Composite
CLH

(c) In high contention, the Composite CLH locks performs much better
the CLH lock because on the upper bound on the number of threads that
can try to get the lock at a given time.

Fig. 9. Performance Comparison of CLH and CLH Composite Locks.

APPENDIX

We briefly explain the locks, their design, how they work,
how they are different and their use cases.

A. TAS Lock

TAS or Test and Set is one of the most simple and easy to
implement locks. It just uses a single boolean atomic variable.
if the boolean value is set, this means the lock is acquired by
some thread, and the new thread uses get and set instruction
to set the value to true and get its old value. It waits till it is
getting true (lock is acquired). The pseudo code for TAS lock
is given in algorithm 1.

Algorithm 1 TAS Lock
1: procedure LOCK(*lock)
2: while test and set(lock) == 1 do
3: repeat;
4: procedure UNLOCK(*lock)
5: lock = 0;

As shown in the code above, while locking, if multiple
entities tries to set the lock to 1, only one of them will succeed
and the rest will see 1 and keeps on waiting.

Some of the features of TAS Lock:
1) Simple and Easy to Implement: It is one of the

most easiest to implement locks, provided that hardware
support is present.

2) Limited Use case: This is used when we expect the
waiting time to be very less and low contention for a
lock.

3) Not fair, Threads can starve: It is not fair in its current
format as once the lock is available, any thread can get
it and there is no concept of queue.

4) Cache Coherency: As all of the threads wait on a
single atomic variable, it creates an issue of cache
coherency in case of multiprocessor architecture, where
the local cached value of variable is invalidated at each
test and set instruction. A more refined approach is
TTAS Lock where the number of writes to the atomic
variable is very less.

B. TTAS Lock

TTAS lock as shown in the algorithm 2 is much similar to
the TAS Lock with one crucial difference. TAS lock writes to
the lock value at each iteration and if it finds the old value to
be 0 it gets the lock. However in case of TTAS lock, it first
checks the current value of lock in line number 3 and when
it finds it to be 0 it tries to acquire the lock by setting the
value to 1. Now, it might happen that some other threads get
the lock in between, in the case it just tries again from the
beginning line 6.

Reading the value of lock before writing it avoid lots of
unnecessary cache invalidation (because of writes) and hence
it performs better than TAS lock. However, it needs support
for test instruction from the hardware.

We do an extensive comparison of TAS and TTAS lock in
section III-B.

Algorithm 2 TTAS Lock
1: procedure LOCK(*lock)
2: retry:
3: while test(lock) == 1 do
4: repeat;
5: if test and set(lock) == 1 then
6: goto retry
7: procedure UNLOCK(*lock)
8: lock = 0;

C. Composite Lock

In a queue based spin lock, which provides first come first
serve, fast lock release and low contention, suffers when it
comes to recycling abandoned nodes because of time-out. The
other way it to use a an exponential back-off algorithm, which
provides a simple way for thread to exit but is not scalable.

The key insight used in composite lock is that if a thread
is way behind in the queue, then it should not have to worry
about the node abandoning. The threads closer to the head of
the queue should be the one to perform the hand-off of the
lock.

Algorithm 3 Composite Lock: Overview
1: procedure LOCK
2: Qnode node = acquireNode();
3: Qnode pred = joinQnode();
4: wait(pred, node);
5: procedure UNLOCK
6: Qnode acqnode = myNode.get();
7: acqNode.state = RELEASED;
8: myNode.set(null);

D. CLH Lock

CLH[2], [3] lock is a queue based spin lock which provides
a fair starvation free synchronisation mechanism. As seen in
algorithm 7. Every thread which wants to acquire the lock
joins the waiting queue using genAndSet operation on the tail
of the list, and then it waits for its predecessor to finish it
operations by spinning on a field in its predecessor node. It
get the lock as soon as its predecessor is done.

Unlocking is simply setting its own locked state as false and
the successor will take notice and get the lock. After releasing
the lock, for all future purpose it will use its predecessor’s
node and not its own (line 11). This is done to avert a problem
known as ABA problem. This is the case where a thread which
just released the lock, tries to acquire the lock again and gets
it without going through the queue because its node is already
in the beginning of the queue.

A problem with CLH lock is that it is waiting on a
field which belongs to its predecessor’s node. This means

Algorithm 4 Composite Lock: AcquireNode
1: function ACQUIRENODE
2: while true do
3: node = waiting[random()];
4: if node.state.CAS(FREE, WAITING) then
5: return node;

〈ctail, stamp〉 = tail.get();
6: if node.sate==(ABORTED or RELEASED) then
7: if node==ctail then
8: QNode myPred = null;
9: if node.state == ABORTED then

10: mypred = node.pred;
11: if tail.CAS(ctail, myPred, stamp, stamp+1)

then
12: node.state = WAITING;
13: return node;
14: if timeout() then
15: throw Exception();

Algorithm 5 Composite Lock: JoinQNode
1: function JOINQNODE(node)
2: do
3: 〈tail, stamp〉 = tail.get();
4: if timeout() then
5: node.state = FREE;
6: throw exception();
7: while (!tail.CAS(ctail, node, stamp, stamp+1))
8: return ctail; . Predecessor of the new tail

Algorithm 6 Composite Lock: wait
1: function WAIT(pred, node)
2: if pred == null then
3: myNode.set(node);
4: return ;
5: State ps = pred.staet();
6: while ps 6= RELEASED do
7: if ps==ABORTED then
8: QNode temp = pred;
9: pred = pred.pred;

10: temp.state = FREE;
11: if timeout() then
12: node.pred = pred;
13: node.state = ABORTED
14: throw exception()

ps = pred.state;
15: pred.state = FREE;
16: myNode.set(node);
17: return

making remote calls to read a value. In case of NUMA this
might create a problem as its predecessor thread might be
scheduled on a different NUMA node which will degrade its
performance.

Algorithm 7 CLH Lock
1: procedure LOCK
2: Qnode qnode = myNode.get();
3: qnode.locked = true;
4: QNode pred = tail.getAndSet(qnode);
5: myPred.set(pred)
6: while pred.locked do
7: repeat
8: procedure UNLOCK
9: Qnode qnode = myNode.get();

10: qnode.locked = false;
11: myNode.set(myPred.get());

E. MCS Lock

MCS like CLH lock is a queue based spin lock, which
guarantees fairness and hence is starvation free. Just like CLH
Lock, a thread which want to get the lock attach itself to the
queue at the end of the queue and waits for it predecessor to
finish. The key difference from CLH lock is that here instead
of waiting on the remote field of the predecessor’s node it
waits on its own local field. It is the job of the predecessor to
change it while releasing the lock.

This subtle changes removes a lots of remote calls and and
improves the performance of the lock as it is spinning on a
local variable. We compare the performance of MCS lock with
CLH lock in section III-C.

Algorithm 8 MCS Lock
1: procedure LOCK
2: Qnode qnode = myNode.get();
3: QNode pred = tail.getAndSet(qnode);
4: if pred 6= NULL then
5: qnode.locked = true;
6: myPred.next = qnode;
7: while qnode.locked do . Differs from CLH Lock
8: repeat
9: procedure UNLOCK

10: Qnode qnode = myNode.get();
11: if qnode.next == NULL then
12: if tail.compareAndSet(qnode, NULL) then
13: return;
14: while qnode.next == NULL do . small wait
15: repeat;
16: qnode.next.locked = false;
17: qnode.next = null;

F. Fast Path Lock

The basic idea in a fast-path lock is that it provides a way
to acquire the lock in low contention by taking a ”fast-path”

in the lock. It uses the highest bit in the tail of the queue
based lock to indicate whether a node has acquired fast-path
or not, as threads coming for this need to account for their
presence. A thread taking the fast-path for lock acquire also
uses a fast-path for unlock operation.

Algorithm 9 Fast Path Lock
1: function FASTPATHLOCK
2: FP = 1� 30
3: 〈anode, stamp〉 = tail.get();
4: if qnode != null then
5: return false
6: if stamp & FP ! = 0 then
7: return false
8: newstamp =(stamp+ 1)|FP ;
9: return tail.CAS(qnode, null, stamp, newStamp);

10: function LOCK
11: if FastPathLock() then
12: return true
13: if SlowLock() then . The usual way to getting a lock
14: while tail.getStamp() & FP ! = 0 do
15: repeat
16: return true
17: return false

	Introduction
	Experiments and Evaluation
	Experimental Setup
	OS Jitter

	Results
	TAS vs CLH Composite vs Composite vs CLH Fast-Path Lock
	TAS vs TTAS
	CLH vs MCS
	CLH and CLH Fastpath Lock
	Composite and Composite Fastpath Lock
	CLH and Composite CLH Lock

	Conclusion
	References
	Appendix
	TAS Lock
	TTAS Lock
	Composite Lock
	CLH Lock
	MCS Lock
	Fast Path Lock

